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MECHANICS: LABORATORY – INTRODUCTION
In this laboratory course on Mechanics you will be performing various experiments related to 
basic physics concepts you are learning in the theory course on Mechanics. We have 
included some experiments on determination of acceleration due to gravity and certain 
material properties like elastic constants of a wire, spring constant of a spring-mass system. 
You will also be performing some experiments based on oscillations and waves. Besides 
this, we have included two units on taking measurements, performing error analysis and 
plotting the data using proper graphing techniques. Our focus is on training you to master the 
skill of making precise measurements on fundamental quantities – length, mass and time – 
and to inculcate the ability to analyze obtained data and understand the physical significance 
of obtained results.  

 While taking measurements with different instruments and analysing data you should be 
aware of the possible sources of error as well as how to correctly record and make 
calculations taking into consideration the concept of significant figures. So, to give you a feel 
for these aspects of experimentation, we have discussed the importance of error analysis 
and method of writing the result with correct number of significant figures in Unit- . Many a 
times the analysis of experimental data is simpler if we represent it on proper graphs. Thus in 
Unit-  we have discussed best practices in graph plotting and making use of appropriate 
graph formats like linear plots, semi-log plots and log-log plots.  

While performing an experiment, it is very important to make right choice of the instruments 
in order to get best possible results. An important consideration in selecting a particular 
instrument is its ability to measure with the desired level of precision. The least count of an 
instrument is one such parameter that plays a vital role in determining the precision of your 
measurement. To illustrate the importance of this parameter in a measurement we have 
included length measurement using various instruments like vernier callipers, screw gauge 
and a travelling microscope in Experiment 1 of this course.  In this experiment, you will also 
be able to apply the corrections for the systematic errors caused during the measurements 
as explained in Unit- and arrive at more accurate results 

In Experiment 2 you will use fly wheel to obtain the moment of inertia of a rotating body. In 
the next three experiments you will learn to determine various elastic constants of a material 
using different techniques. Young’s Modulus is one of the most important mechanical 
properties of solids, particularly for building bridges and erecting columns in high rise 
buildings. In Experiment 3, you will learn to determine the Young’s Modulus of a material by 
using the method of bending of beams. The depression in the beam can be measured by a 
microscope as well as an optical lever arrangement. In this experiment, while measuring 
lengths using optical instruments, you will also learn to remove parallax and take correct 
measurements. In Experiment 4 you will learn to use Maxwell’s needle to determine the 
modulus of rigidity of a wire. It essentially uses dynamical method where time periods of the 
oscillating needle are measured under different configurations. Apart from these two moduli, 
there are two other elastic constants: Bulk modulus and Poisson ratio. In Experiment 5 you 
will use Searle’s apparatus to determine all the four elastic constants.  

In the following two experiments (Experiments 6 and 7), you will use the simple harmonic 
motion performed by a homogeneous mass distributed system (bar pendulum) and 
asymmetric mass distributed system (Kater’s pendulum) to determine the acceleration due to 
gravity. 
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Springs have many uses in our daily life. In Experiment 8, you will calculate the spring 
constant of a spring in two different ways: , where we determine extension as a 
function of load and , where we measure the period of harmonic oscillations 
of a spring-mass system. 

We all know that life without music would have been less enjoyable. As a student of physics, 
you would like to know as to how musical instruments like , violin, guitar and 
generate music and what factors determine its quality. In Experiment 9 you will study the 
dependence of frequency of vibrations of a stretched string on applied tension, its mass per 
unit length and its vibrating length. You will also establish the relation between frequency and 
wavelength for waves generated on a stretched wire. 

In the last experiment (Experiment 10) of this laboratory course you will be studying the 
Lissajous figures generated by superposition of two mutually perpendicular sinusoidal waves. 
By studying the shapes of these figures, you will be able to determine the phase relation 
between the two waves. You will also be able to obtain the frequency relation between two 
different frequency waves by studying the Lissajous figures generated by them. In this 
experiment you will have an opportunity to use the Cathode Ray Oscilloscope (CRO), which 
is a very commonly used electronic instrument in electronics laboratories. You will also get 
an opportunity to build small electronic circuits to generate waves with phase difference. 

The purpose of including these experiments in this laboratory course is to start from a 
familiar situation and give you experience of planning the experiments with increasing levels 
of sophistication. The basic purpose of this laboratory course is to inculcate the art of setting 
up the apparatus, taking measurements, making simple calculations and analysing the 
results.  Moreover, you will appreciate that a lot of good physics can be understood with 
simple experiments and activities. 

We hope that you will have enjoyable experience in the laboratory. 
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             UNIT 

MEASUREMENTS AND 
ERROR ANALYSIS 

Structure 

.1 Introduction 
Expected Learning Outcomes 

.2 Errors in Measurements 
Probable Error and Precision 

Relative Error and Accuracy 

.3 Reporting Results 
 Scientific Notations 

 Significant Digits 

.4 Types of Errors 
Systematic Errors 

Random Errors 

.1   INTRODUCTION 
As a student of science, you may have done experiments in your school laboratory. You 
know that many kinds of instruments are used to measure physical quantities. When we 
measure various physical quantities, it is very important to understand the correct way to 
make measurements and obtain correct readings. It is also a fact that even the best of the 
measuring instruments do not yield the true values of the quantities being measured. This is 
because of their limited accuracy and precision.  

We express these measurements as approximate numbers such as 3.2 cm or 3.20 cm. Do 
you know why we use numbers upto different decimal places and what distinguishes them? 
While doing computations with these numbers special care is required. For example, the 
ratio of two measurements such as 32.1/12 is expressed as 2.7 rather than 2.68 or 2.675. Do 
you know the reason? The number of digits used in a measurement carry some significance 
regarding the quality of measuring instrument. 

In this laboratory course, you will handle various instruments to make measurements. So, it 
is a good idea to learn some basic concepts related to any measurement. In this unit,  

.5 Estimating the Magnitude of 
Error 

.6 Propagation of Errors 
Error Propagation in Basic 
Operations 

Error Propagation in Angular 
Measurements 

Error Propagation due to 
Exponent of a Measured Quantity 

.7 Summary 

.8 Terminal Questions 

.9 Solutions and Answers 
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you will learn the meaning and usage of measured numbers, with particular 
reference to precision and accuracy of the experimental result. It is also 
important to report your measurements in appropriate manner. So in the first 
two sections (Sec. .2 and .3) of this unit, you will learn the meaning of 
precision, accuracy and about reporting the results in scientific notation with 
significant digits. 

You also know that every measuring device has a least count, which tells us of 
its ability to measure a physical quantity up to a particular accuracy. It means 
that the number obtained as a result of (a series of) measurement(s) cannot 
be said to be ‘exact’ or ‘true’. Further, there can be defects in measuring 
instruments and even a very careful experimentalist is susceptible to certain 
personal errors. Both these factors give rise to experimental error. 

The uncertainty in any number obtained from a measurement constitutes what 
is referred to as error. It is important to note that within an experiment, the 
error accumulates in different measurements. Therefore, in Sec. .4, you will 
learn about the types and sources of errors. You will also learn how to 
estimate and possibly eliminate or minimise and account for such errors. In 
most physics experiments, our objective is to determine the relationship 
among physical quantities. We carry out calculations using the observed 
readings in appropriate formulae. In Sec. .5 we discuss about the propagation 
of error during such calculations.  

In this laboratory course, you will first perform length measurements and then 
do experiments involving two or more physical quantities. 
 
Expected Learning Outcomes 
After studying this unit, you should be able to: 

 explain why measurements result in approximate numbers; 

 distinguish between precision and accuracy; 

 report a measurement in scientific notations with correct number of 
significant digits; 

 identify the sources of error; and 

 distinguish between random errors and systematic errors. 

.2   ERRORS IN MEASUREMENTS 

Firstly, an error may be caused due to a defect in the measuring instrument 
itself, such as the zero error. Secondly, an error could be due to limitations of 
human judgement and perception, such as in aligning the end of a rod to be 
measured with the zero of the scale, or parallax in reading a value. To enable 
you to better appreciate the inexact nature of measurement, let us consider 
length measurement. Let us assume that we have a ‘perfect’ centimetre scale 
which has clear and equal markings of millimetres. We wish to measure the 
length of three arrows A, B and C shown in Fig. .1 using this scale. Let us 
suppose that we are able to perfectly align the tails of the arrows with zero 
marking on the scale. (This is impossible to achieve in practice. But let us 
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begin by considering an ideal situation to understand the process of 
measurement.) 

 

 

 
 
 
 
 
 
 

 
Fig. .1: The length of all the three (unequal) arrows A, B and C is reported as 

4.3 cm. The shaded portion on the scale represents the range of error in 
this measurement. (The scale is highly magnified.)  

To measure the length of the arrows, we look at the arrow heads. The head of 
arrow A is closer to the 4.3 cm mark than to the 4.2 cm mark. We will report 
the length of arrow A as 4.3 cm to the nearest millimetre. Let us now measure 
the length of arrow B.  The head of arrow B is closer to 4.3 cm mark than to 
4.4 cm mark.  Therefore, we will report its length also as 4.3 cm. Similarly the 
length of arrow C would be reported as 4.3 cm. Thus the lengths of all arrows, 
though different, will be reported as 4.3 cm.   

We can conclude that a measurement which is reported as 4.3 cm (which is in 
the middle of R1 and R2) might possibly be in error by 0.05 cm (or one-half of 
the unit of measure, which is 0.1 cm in this case) or less. It means that in the 
measurement 4.3 cm, the last digit, 3 is in error. We can generalise this result: 
no measurement can ever be exact; there will always be deviation from the 
true value due to the limited accuracy of the measuring device/instrument. The 
inaccuracy is reflected in the last digit. 

 

We have seen that the maximum error, barring a human error in a 
measurement, is half of the unit of measurement. The probable (or possible) 
error is thus due to inherent imprecision in measuring devices called least 
count of the instrument.  Measurements having less probable error are more 
precise.  Since probable error is proportional to the smallest unit of 
measure the instrument can measure (least count), the instrument 
having smaller least count gives more precise measurement. A 
measurement reported to one-hundredth of a centimetre, such as 5.32 cm is 
more precise than a measurement reported to one-tenth of a centimetre, such 
as 5.3 cm. 

 
 

To be able to determine the precision of any measurement, you may like to 
attempt an SAQ. 

.2.1    Probable Error and Precision 

The probable error is half of the unit of measurement.
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SAQ  1  –  Precision in measurement 

Consider the following pairs of measurement. Indicate which measurement in 
each pair is more precise: 

a) 17.9 cm or 19.87 cm 

b) 16.5 s or 3.21 s 

c) 20.56 C or 32.22 C 

.2.2    Relative Error and Accuracy

So far we have considered measurement of nearly equal lengths with 
emphasis on precision. Let us now consider measurement of far 
different lengths. Suppose that two measurements yield 3.2 cm and 
98.6 cm using the same metre stick. The probable error in both these 
measurements is equal to 0.05 cm. But the measurement 98.6 cm is 
bigger than measurement 3.2 cm.  Would you say that the 98.6 cm is 
more accurate? Again, let us consider measurement of time in 
seconds. How do the measurements 7.4 s and 98 s compare in terms 
of accuracy? You must have noticed that, the probable error in 
measuring 7.4 s is 0.05 s, whereas for 98 s, it is 0.5 s. To compare 
such measurements, we introduce the term relative error, which is 
defined as the ratio of probable error to the total measurement.   

 

 

In Table .1, we have calculated relative error in a few typical measurements. 
The exact method of expressing the relative error will be discussed in  
section .5. 

Table .1: Calculation of relative error 
 

Measurement Unit of measure Probable error Relative error 

3.2 cm 
98.6 cm 

0.1 cm 
0.1 cm 

0.05 cm 
0.05 cm 

0.02 
0.0005 

7.4 s 
98 s 

0.1s 
1s 

0.05 s 
0.5 s 

0.007 
0.005 

Note that in the measurement of 3.2 cm and 98.6 cm, the unit of measure is 
the same and we say that both measurements are equally precise. But the 
relative error is less in the larger measurement (0.0005 compared to 0.02) and 
it is said to be more accurate. 

Comparison of measurement 7.4 s and 98 s is more revealing. The 
measurement 7.4 s is more precise than the measurement 98 s (possible 

Relative Error
tMeasuremenTotal

ErrorProbable
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Consider the following pairs of measurements. Indicate which measurement 
in each pair is more accurate: 

a) 40.0 cm or 8.0 cm 
b) 0.85 m or 0.05 m 

errors 0.05 s and 0.5 s, respectively) but less accurate (relative error 0.007 as 
compared to 0.005). 

You will therefore appreciate that a smaller measurement needs to be more 
precise for the same accuracy. This is why when measuring the dimensions 
of a room, metre is used as unit of measurement, while in measuring inter-city 
distances, the unit kilometre is used for the same accuracy. 

Now try to ascertain the accuracy in the given pair of measurements in the 
following SAQ. 

 
SAQ  2  –  Accuracy in measurement

 

 

 

 

 
 
 
 

After understanding the difference between precision and accuracy in 
measurements based on probable and relative errors, we will now discuss 
about reporting the observations (readings) taken by you in scientific way. 

.3   REPORTING RESULTS 

In the scientific notations (SI system of measurement), a measurement is 
expressed in decimal numerals. You may recall that in inter-atomic distances, 
very small numbers are obtained, whereas in measuring interstellar distances, 
we have to deal with very large numbers. In scientific notation, these numbers 
are written as a number between one and ten using a decimal point notation 
and then multiplied by an integral power of ten. For example, the diameter of 
the sun is 1,390,000,000 metre and the diameter of hydrogen atom is only 
0.000000000106 metre. In scientific notation, we write the diameter of the sun 
as 1.39  109 m and the diameter of the hydrogen atom as 1.06  10 10 m. 

SAQ  3  –  Expressing results in scientific notation 

Express the mass of a water molecule, 0.000 000 000 000 000 000 000 03g, in 
scientific notation. 

You will appreciate that writing numbers in scientific notation makes 
representation more convenient. Moreover, calculations become easier 
because we can apply the laws of exponents readily. 

.3.1    Scientific Notations 

Note that in a measurement, errors can be introduced by 
 the measuring instrument due to its inherent imprecision; 
 limitations of an experimentalist; and 
 external conditions. 
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Table .2 

Sl.  
No. 

 

Measurement
(m) 

No. of 
Significant 

Digits 

Unit of 
Measurement 

(m) 

Probable 
error 
(m) 

Relative 
error 

1. 0.2 1 0.1 0.05 0.05m 0.25
0.2m

0.2  

2. 0.20 2 0.01   
3. 0.2000     
4. 25     
5. 250     
6. 25000     
7. 102     
8. 1002     

.3.2    Significant Digits 

In Sec. .2.1, you have learnt that a measurement reported as 5.32 cm is more 
precise than that reported as 5.3 cm. The number of digits in these 
measurements is three and two, respectively. This suggests that the number 
of digits used in reporting a measurement have some significance. Whenever 
you report any measurement, it is important to express it in “correct” number of 
significant digits. For example, suppose that you are measuring time with a 
stop watch with least count 0.1 s and reporting readings by taking average of 
(say) three events. If the time measurements are 5.5s, 5.7s, 6.0s respectively; 
then  the average is 5.733s. Note that these measurements have two 
significant digits; so you will report the result as 5.7s with two significant digits.  

There are certain rules for counting the significant digits. We now state these 
with some examples. 

 All zeros appearing between two non-zero digits are significant. The 
measurement 107.005 m has six significant digits, whether it is written as 
0.107005 km or 10700.5 cm. 

 All zeros appearing on the immediate right of a decimal point, i.e. in front of 
non-zero digits are not significant, when there is no non-zero digit on the 
left of the decimal. Thus, 0.003 kg has one significant digit, as does 0.7s. 
However, 0.103 m has three significant digits and so does 0.00783 m. 

 All zeros following a non-zero number and to the right of the decimal point 
are significant. The measurement 47.000 m has five significant digits while 
700.000 kg has six significant digits. 

You may now like to answer an SAQ. 

SAQ  4  –   Significant figures 

Complete the Table .2 and answer the following questions: 

 

 

 

 

 

 

 

 

 

a) Is there a significance of ‘trailing’ zeros in the first three measurements? 
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b) What about the significance of the zeros in the fifth and sixth 
measurement? 

c) What is the significance of zeros between non-zero digits in the seventh 
and eighth measurements? 

 
After solving SAQ 4, you must have realised that any number is significant, 
when it affects the relative error. That is the measurement with more number 
of significant digits have greater accuracy. 

Sometimes we take a sequence of whole number measurements such as 32, 
30, 28, 26.  All these measurements have two non-zero significant digits, 
except the measurement 30. In such special cases, zero is also significant 
without any ambiguity. 

Now you have understood that errors in measurements can crop up due to 
various reasons. In the next section you will learn about different types of 
errors. 

.4  TYPES OF ERRORS 
So far you have learnt that errors can arise due to limitations of measuring 
instruments as they cannot measure smaller than their least count. For 
instance, a metre scale cannot measure less than 0.1 cm, a vernier callipers 
measures a minimum length of 0.01 cm and a screw gauge cannot measure 
distances less than 0.001 cm. Similarly, a thermometer can measure 
temperature to a precision of half a degree Celsius. When measuring angles, a 
simple protractor measures to a precision of one degree, but when a vernier is 
attached to the protractor, as in a spectrometer, we can measure angles more 
precisely, up to 30 .  

In addition to the limitations listed above, which are inherent in the measuring 
device, other sources of error could be (i) changes in environment, (ii) faulty 
observation techniques, (iii) malfunctioning of measuring devices, etc. 

The errors in any measurement can be classified in two broad categories: 
Systematic Errors and Random Errors. Let us now learn about these in detail. 

 
 
Systematic errors arise mostly due to the instruments used in the 
measurement. They are also called ‘determinable’ errors and arise due to 
identifiable causes. For this reason, these can, in principle, be eliminated or 
corrected. These errors result in measured values being either consistently 
high or low from the true value. You will typically encounter the systematic 
errors in the form of following instrumental errors: 

 Zero Error arises due to wear and tear caused by extensive use. The zero 
of the vernier scale may not coincide with the zero of the main scale when 
the jaws are put in contact. The magnitude and nature (positive or 
negative) of the zero error can be easily determined and corrected. In case 
of positive zero error, the zero of the vernier scale is on the right of the 

.4.1    Systematic Errors 
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zero of main scale and opposite is the case for negative zero error. So, for 
positive zero error, we subtract (and add in case of negative zero error) the 
value of error from the measured value.  

 Backlash Error in a screw gauge, a travelling microscope or a 
spherometer can arise due to wear and tear of a rotating part or defective 
fitting in the instrument. In this case, a forward or backward rotation may 
not produce the same result. This is minimised by rotating the screw head 
of the measuring device in only one direction from the initial to the final 
point of measurement.  

 End Correction arises when the edge (zero marking) of a scale is not 
distinctly visible due to wear out. This leads to an error if one tries to keep 
the zero of the scale at the starting point. This can be eliminated easily by 
shifting the reference point of the scale to a definite and distinct point (say, 
1 cm mark). 

 Errors due to changes in a physical quantity can take place during the 
course of the experiment. For example, the resistance in electrical circuits 
can change due to the heat generated on passing current through it. This 
leads to errors that are generally difficult to calculate or compensate for. 
However, this can be avoided to some extent by allowing the current to 
flow in the circuit only when observations are being taken. 

 Defective or improper calibration in instruments such as ammeter or 
voltmeter leads to errors in the measurement. In this case, there will be a 
constant difference between measured and true values. This arises due to 
manufacturing defect. The best option in such a situation is to calibrate the 
instrument against a standard equipment. 

 Faulty observation can also arise due to parallax. To minimise error due 
to parallax, you should note the reading along the line, which is normal to 
both, the scale and the edge of the table on which scale is placed.  

  

You must have noticed that if the same measurement is repeated for the same 
quantity, you may get different readings with a scatter of values distributed 
about some mean value. These are called random errors and can arise due 
to accidental errors in the measurement process. The sources of random 
errors cannot always be identified. However we list a few possible sources. 

 The observational random errors arise due to error of judgment of the 
observer while reading the smallest division in the scale (like the 
coincident vernier division with the main scale division). To minimise 
observational random errors, you should always take more readings and 
calculate their mean or draw the best fit graph as explained in Sec. .2.1 
in the next unit. 

If the values obtained in several measurements are x1, x2, x3, …, xN, the 
average value is determined by adding all the values and dividing their 
sum by the total number of observations: 

 1 2 3 ... Nx x x xx
N

           ( .1)    

.4.2    Random Errors 

When an observer 
experiences relative 
movement of an object 
and its image, there 
exists a parallax between 
them.
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Classify the following according to the type of error involved by putting a tick 
in the appropriate column: 

Sl. 
No. 

Measurement Type of Error 
Systematic Random 

i)  A time interval measured using a 
stop watch that is running slow 

  

ii)  The length of a piece of steel rod is 
measured by several students in a 
laboratory  

  

iii)  A steel scale expands on a hot day 
to give a short reading of length 

  

iv)  The needle of a voltmeter is bent 
such that it does not rest on zero 

  

v)  The number of nuclear particles 
emitted per second by a sample of 
radioactive element 

  

 The environmental random errors can arise due to unpredictable 
fluctuations in line voltage, sudden changes in temperature or mechanical 
vibrations, etc. There could also be a random spread of readings due to 
wear and tear or friction of mechanical part(s) of the system. 

In the following SAQ you will classify some errors. 

SAQ  5  –  Classification of errors 

 

 

 

 

 

 

 

 

 

 

When inexact values are used in a calculation, some error or uncertainty in the 
result is inevitable. The quality of a measurement and reliability of the result so 
obtained are determined by the magnitude of the estimated error. In scientific 
work, it is customary to quote a result along with associated error in 
measurement (with proper units) and upto the same order of magnitude. 

 

 

 

 

 

 

If only rules (1) and (2) are followed, the form of result is correct but not 
standard. Rules (3) and (4) convert the result to standard form. For example, 
the standard form of result for measurement of length where metre scale is 
used should be written as (4.6  0.1) cm. 

Random errors can be quantified by statistical analysis and expressed as 
absolute error or relative error. Let us now learn how to estimate these. 

We express the result of any measurement in a standard form along 
with error using the following rules: 

1) The error is stated up to one significant digit only. 

2) The measurement is rounded off to the same order of accuracy 
as the error. 

3) The result of measurement is written with the decimal point after 
the first significant figure. 

4) The error is multiplied by the same power as the measurement. 
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.5   ESTIMATING THE MAGNITUDE OF ERROR 
Refer to Table .3, where typical values of measurement of time period are 
given. Just by looking at the data, could you identify the “true” value of the time 
period? Probably not! 

Table .3: A set of typical values of measurement 

Sl. No. Data )( ix  
(s) 

Deviation xxx ii   

(s) 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

2.69 
2.67 
2.68 
2.69 
2.68 
2.69 
2.66 
2.67 

0.01 
0.01 
0.00 
0.01 
0.00 
0.01 
0.02 
0.01 

           x  =  2.68            = 0.009 

The magnitude of the difference between the mean value of a physical 
quantity and its individual measured value (listed in the last column under 
‘Deviation’ in Table .3) is known as absolute error in the measurement. Let 
us denote it by  xi.  

If N independent measurements of a quantity are labelled as 1 2, ,....., ,Nx x x  the 
average value is given by Eq. ( .1). In summation notation, we can write 

 
1

1 N

i
i

x x
N 1

1
N

N

i
i

xi
1

 ( .2) 

The symbol  (sigma) represents the sum of all measurements. As you can 
see from Table .3, the average value of time period is 2.68 s. To calculate 
absolute error, we calculate the modulus of individual deviations xxii  

from the average value (as listed in the last column). Then, these deviations 
are added and their sum is divided by the total number of observations. 
Mathematically, we can write, 

 111
i

N

i

N
 ( .3) 

For the data given in Table .3, the average value of absolute error is 0.009s. 
So we express the result of measurement as (2.68  0.01) s. Note that 
absolute error has the same units as the quantity measured.  

In error analysis, a useful measure of deviation is the variance. That is, 
variance is a measure of the spread of a distribution of observations. For N 
observations, the variance in summation notation is given by  
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The measurement of the length of a table yields the following data:   
     x1 = 135.0 cm,  x2 = 136.5 cm,   x3 = 134.0 cm,   x4 = 134.5 cm 
Calculate the standard deviation and express the final result with possible 
error involved. 

2

1
( )2)

1
( )

1

N

i
2 i

x

N
  ( .4) 

Once variance is known, its square root gives the standard deviations. It 
represents the range over which measurements vary. In other words, the 
standard deviation equals the magnitude of the uncertainty in the 
measurements. 

You must be wondering as to why we consider standard deviation and not 
merely the average of deviations. This is because the individual deviations 
(which are also an indication of error involved in measurement) may be 
positive or negative. Since errors are additive in nature, it is more appropriate 
to take average of squares of the deviations and calculate standard  
deviation. 

To give you a feel of the numbers, we would like you to answer the following 
SAQ. 

SAQ  6  –  Standard deviation 

 

 

 

A better index of the accuracy of a measurement or equipment is relative 
error, also called percentage error. In fact, quite often we express our result 
by quoting the relative error rather than the absolute error. The relative error is 
the ratio of absolute error to the mean measured value of the quantity 
expressed in percent: 

 100.100xx
x

 ( .5) 

Note that we have written the relative error as x to distinguish it from the 
absolute error. You will note that the relative error covers all or most of the 
readings. 

.6   PROPAGATION OF ERRORS 
You now know how to calculate error in the measurement of a directly 
observable physical quantity. But in most experiments, you would be required 
to measure two or more independent quantities to determine a physical 
quantity of interest. Therefore, the error in the final result depends on the 
errors in the measurement of individual parameters. In other words, the error in 
each measurement will “propagate” and get reflected in the final result. The 
actual analysis of propagation of errors is beyond the scope of this laboratory 
work. We shall, therefore, quote only some useful rules. 

.6.1    Error Propagation in Basic Operations 

To understand how error propagates through basic mathematical calculations, 
we first consider addition and subtraction of two or more numbers.  
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Addition and subtraction  
Suppose that two physical quantities A and B have measured values )(A  
and )(B , respectively, where  and  are their absolute errors. Let us 
calculate the error  in their sum  = A + B. 

We have by addition  

   = (A  A ) + (B  B ).  

The maximum possible error in  is therefore  

 = A  + B . 

For the difference  = A  B, 

    = (A  A )  (B  B ) 

             = A  B  A   B  
 or 
   =  A   B  ( .6) 

The maximum value of the error  is sum of individual errors ( A  + B ). 
Hence the rule for propagation of errors for a sum or a difference is: The 
absolute error in the final result is the sum of the absolute errors in 
individual quantities. 

As such, Eq. ( .6) over-estimates the error. A more useful expression for  
based on statistical analysis is 

 
22

BA  ( .7) 

Let us now calculate a propagating error in the following example. 
 
 

 

 

 

 

 

 

 

  

 

 
 
 
 

 

     XAMPLE I.1:   PROPAGATION OF ERROS IN ADDITION 

The measured values of two lengths L1 and L2 are (1.746  0.001) m and       
(1.507  0.001) m, respectively. Calculate the total error in the 
measurement of L1 + L2. 

Solution 
The error in measurement would be equal to the sum of errors in L1 and L2. 
Thus  

 L  = 1L  + 2L  = (0.001 + 0.001) m = 0.002 m  

and you can express the result as 

 L = (3.253  0.002) m 

If you use statistical analysis, you will obtain 

 
2

2
2

1 LLL  

22 m)001.0(m)001.0(  

      = 0.0014  

  = 0.001 m 

Note that we have kept only positive root because errors are cumulative. 
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Multiplication and division 

If a quantity E = A  B and the results of measurement of A and B are  
(A  A ) and (B  B ), respectively, then we an write 

 E  E  = (A A )  (B B ) 

               = AB  B A   A B   A  B . 

Dividing by E = AB throughout, we obtain 

 1 1 .E A B A B
E A B AB

 ( .8) 

Since A  and B  are small, the term 
AB

BA  can be neglected. Hence the 

maximum error in E is given by 

 
B
B

A
A

E
E . ( .9) 

Let us now consider the propagation of error when the operation of ‘division’ is 

carried out. If we write ,
B
AE the error E  will also be given by Eq. ( .9).  

If you take logarithm of E = AB and differentiate it, you will get 
B
B

A
A

E
E . 

This is generally known as the logarithmic error. 

If you make statistical analysis, you will get the following result: 

 .
B
B

A
A

E
E  ( .10) 

You can now conclude that when independent measurements are 
multiplied or divided, the fractional error in the result is the square root 
of the sum of the squares of fractional errors in individual quantities. 
These results hold for absolute errors as well as relative errors. 

Let us now see how error propagates in calculations involving operations of 
both multiplication and division. 

 

 

A particular physical quantity, in an experiment, is computed from the 

relation XYB . Take the values of X, Y and  measured in the laboratory 

as: 

XAMPLE I.2 :   ERROR PROPAGATION IN MULTIPLICATION 
AND DIVISION 
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.6.2    Error Propagation in Angular Measurements 

In your B.Sc. physics laboratory, you will get an opportunity to make very 
accurate and high precision measurements of angles. This is particularly true 
of experiments involving measurement of small physical quantities such as 
wavelength using a grating and a spectrometer. A spectrometer has a fixed 
circular protractor with a vernier moving over it. Usually the least count of a 

spectrometer is 1 min of an arc or 
th

16
1  of a degree. The calculations of error 

propagation are the same as in other measurements, as illustrated below. 

In a diffraction grating experiment, the wavelength  = N sin , where N is the 
number of rulings in the grating and  is the angle of diffraction for that . Then 

  cot
sin
cos

N
N . 

 

 

Suppose we have to calculate the area of a square piece of land of side A. It is 
given by s = A  A = A2. From Eq. (I.9), it readily follows that 

 
A
A

A
A

s
s  

       
A
A2  ( .11) 

.6.3 Error Propagation due to Exponent of a  
 Measured Quantity

  X = 17  10% 

  Y = 100  6 

and  = 15  3 

Let us see how error propagates in such a situation. 

Solution: 
By converting the uncertainties to percentage, you will find that 

  
%)2015(

%)6100(%)1017(
B  

      = 113.33  36%, 

where we have added the uncertainties. 

Proceeding further, you will note that 36% of 113.33 = 40.7988 so that 

B = 113.33  40.80 

This means that the uncertainty in the value of B is about 41. So, it 
makes no sense to retain the digits after the decimal in the value of B 
as well as the uncertainty. It is therefore more sensible to write: 

B = 113  41.
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That is, the error in A2 is twice the error in A. You will obtain the same result if 
you take the logarithm of both the sides: 

 log s = 2 log A 

On differentiating and changing the differentials to ‘deltas’, we get Eq. ( .11). 

For a wire, the diameter d is measured as (1.02  0.01) mm. Therefore, the 

error in the area of cross section 
4

2d  will be twice the error in d, i.e. 

nearly 2%. 

In general, if a quantity appears in an expression with a power n ( > 1), its 
error contribution increases n-fold. This means that you should measure 
quantities appearing with power 2 or more with a higher degree of accuracy. 
Moreover, take a large number of readings. In case its magnitude is small, you 
should take readings at different points/ perpendicular directions.  

Now study the following example. 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

XAMPLE I.3:  ERROR PROPAGATION DUE TO EXPONENTS 

The period of oscillation of a simple pendulum is .LT 2
g

 L is about 

100 cm and is known to 1 mm accuracy. The period of oscillation is about 2 s. 
The time of 100 oscillations is measured with a wrist watch having least count 
of 1 s. Calculate the percentage error in the value of g. 

Solution 

You can rewrite the expression for T as 

 
2

24
T

Lg  

Therefore, the percentage error in g can be calculated using the relation 

  
T
T

L
L

g
g

1002100100

The percentage error in %1.0
cm100
cm1.0100100

L
LL  

and 

the percentage error in %5.0
s1002

s1100100
nT

TT

Hence 

%1.15.021.0100
g
g  
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Let us now sum up what you have learnt in this unit. 

.7   SUMMARY 

 Precision of any measurement depends on the least count of the 
measuring instrument. 

 The result of every measurement is expressed in numbers such that only 
the last digit contains error.  

 In scientific notation, a measurement is expressed as a decimal number 
between one and ten multiplied by appropriate power of ten. 

 Relative error is the ratio of probable error to total measurement.  
Accuracy is related to relative error. 

 Systematic errors can arise due to zero error, backlash error, end 
correction, defective calibration or faulty observation procedures. Such 
errors are identifiable. So these can be eliminated or accounted for. 

 Random errors can arise due to error of judgement and environmental 
factors during the performance of measurements. Such error results in a 
scatter of values and to minimise these, we take a large number of 
observations. 

 While adding (or subtracting) approximate numbers, round off the sum (or 
difference) to the same unit of measure as the least precise measurement. 

 The magnitude of errors can be computed statistically. It is usually 
expressed as a mean of deviations of observed values from the final value 
or through standard deviation. 

 Errors are cumulative and propagate in an experiment depending on the 
number of measurements and measuring devices. 

.8   TERMINAL QUESTIONS 
1. A physical quantity x is related to three other physical quantities a, b and c 

through the relation  

  2 3ab c 32ab2x  

If the errors in a, b and c respectively are 1%, 3% and 2%, calculate the 
percentage error in x. 

2. In the measurement of viscosity of a liquid, we determine the rate of flow of 
the liquid (volume flowing per second, V) through a capillary tube of radius 

Note that we have multiplied T by n while calculating the percentage 
error in T. Do you know why? This is because the actually measured 
quantity is time for 100 oscillations (n  T) rather than T. If you take time 
for one oscillation, the percentage error in T will be 50%. It means that 
taking more oscillations per observation helps us to reduce error 
in a measurement.
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a and length L under constant pressure difference p. The expression for 
viscosity is given by 

  
LV
pa

8

4
. 

If the percentage errors in p, a, V and L respectively are 1%, 1%, 2% and 
1%, calculate the percentage error in . 

.9   SOLUTIONS AND ANSWERS 
 
Self-Assessment Questions 
 
1. a) 19.87 cm 
 b) 3.21 s 
 c) Equally precise 
 

2. a) The relative errors are: 

   
800

1
4000

5
40
05.0  

  and 

   
160

1
800

5
8
05.0  

Therefore, the measurement 40.0 cm is more accurate. However, both 
measurements are equally precise. 

 b) The measurement 0.85 m is more accurate but as precise as 0.05 m. 
3. 3  10 23 g 
  
4. Sl. 

No. 
Measurement 

(m) 

No. of 
significant 

digits 

Unit of 
measurement 

(m) 

Probable 
Error 
(m) 

Relative error 
 

 
1. 0.2 1 0.1 0.05 25.0

2.0
05.0

 

 
2. 0.20 2 0.01 0.005 025.0

20.0
005.0

 

 
3. 0.2000 4 0.0001 0.00005 00025.0

2000.0
00005.0

 

 
4. 25 2 1 0.5 02.0

25
5.0

 

 
5. 250 3 1 0.5 002.0

250
5.0

 

 
6. 25000 5 1 0.5 00002.0

25000
5.0

 

 
7. 102 3 1 0.5 0049.0

102
5.0

 

 
8. 1002 4 1 0.5 000499.0

1002
5.0

 

 
 a) They are significant. 

 b) They are also significant. As a rule, only those zeros are significant 
which come from a measurement. Since the unit of measurement is  
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1 m in both these cases, the zeros trailing the numbers are arising out 
of the measurement and hence are significant.  

 c) Significant. 

5. i) systematic,  ii) random,  iii) random 

 iv) systematic  v) random  
 

6. Sl. 
No. 

Length (xi)  
(cm) 

xi = xi  x  
(cm) 

2
i )x(  

(cm2) 

 1. 135.0 0 0 

 2. 136.5 +1.5 2.25 

 3. 134.0 1.0 1.0 

 4. 134.5 0.5 0.25 

  
135.0

4
540

N
xix  

 
i( ) 3.53.5i( )ix

 

( ) 3.5 0.9 1.0
4

x
N

( ) 3.5 0.9 1.0
4N

( cm.  

The final result can be expressed as length = (135  1 cm) 
 
Terminal Questions 
1. To calculate the percent error, we note that 
  a = (a0 ± 1%) 
  b = (b0 ± 2  3%)  and 
  c = (c0 ± 3  2%) 
 So the total percentage error in x is1+6+6 = 13%. 

2.  
l
l

V
V

a
ax

p
p 4  

  Percentage error in  is = 1+4+2+1 = 8%. 
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         UNIT 

GRAPHING 

Structure 

.1 Introduction 
Expected Learning Outcomes 

.2 Plotting a Graph 
Linear Plots 

Non-linear Plots 
 

.1   INTRODUCTION 
In Unit  you learnt that the result of any measurement is expressed in the form of numbers. 
When we perform any experiment, generally we try to establish a relationship between two or 
more physical quantities to arrive at the results.   

Many times, it is not possible for us to visualise the functional relationship between two 
quantities by just looking at the experimental data. But if we plot a graph, it becomes very 
easy, quick and convenient to predict the nature of relationship. Once such relationship is 
known, we can even predict the value of a parameter for intermediate values of the 
quantities, where we may not have taken actual observation. In fact, graphs can also be 
used to minimise errors or locate inaccuracy in observations. 

In many of the experiments you will be performing in this course, you will need to plot the 
graphs of various quantities. There are certain good practices of plotting a graph, which 
makes it readable and understandable to everybody. In this unit you will become familiar with 
methods of plotting the graphs and writing correct legends. Hence we will advice you to go 
through this unit carefully before starting the experiments in the laboratory. 
 
Expected Learning Outcomes 
After studying this unit, you should be able to: 

 establish functional relationship between various physical quantities; 

 make a choice of appropriate scale on the graph; 

 depict the observations on the graph with error bar; 

 use the criterion of best fit in a straight line plot; 

 interpret a graph and determine the values of physical quantities of interest; and 

 carry out error estimation in slope and intercept on a plot. 

.3 Error Estimation on 
Graphical Plots 

.4 Summary 

.5 Terminal Questions 
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.2   PLOTTING A GRAPH 
In this section, we describe both linear and non-linear plots. 

 
 

A straight-line graph is the easiest to draw (Fig. .1). The equation for a 
straight line is y = mx + c, where m is the slope (gradient) and c is the intercept 
on the y-axis. In Fig. .1, the slope of the straight line is given by 

 
AC
BCm  

and OP is its intercept c.   

You should use a graph-paper to draw the graphs. Generally the graph-paper 
has a grid of 1 cm  1 cm squares printed on it. Each square is further divided 
into 1 mm  1 mm sub-parts. Such graph paper is referred to as linear graph 
paper. 

When drawing graphs, you must observe the following points: 

i) Identify the independent and dependent variables. It is a customary to plot 
the independent variable along the x-axis and the dependent variable 
along the y-axis. 

ii) You should choose the scales so that the points are suitably spread out on 
the entire graph paper as shown in Fig. .2a rather than being cramped 
into a small portion as done in Fig. .2b. For this, first of all note the 
minimum and maximum values of the data to be plotted. Then round off 
these numbers to slightly less than the minimum and slightly more than the 
maximum. The resulting difference should be divided by the number of 
divisions on the graph paper. For example, if you are to plot data between 
6.4 s and 18.7 s on x-axis and corresponding y-axis readings range 
between 32.8 cm and 57.4 cm then, it would be convenient to allow the  
x-scale to run from 5 to 20 s rather than 0 to19 s and y-scale between 30 
and 60 cm instead of 0 and 58 cm. 

 
                     
 
 
 
 
 
 
 
 
                                     (a)                                                                   (b) 

 Fig. .2: Choice of scale a) proper; and b) improper. 

iii) Draw axes clearly and write the name of the physical quantity to be 
plotted, its symbol, unit and the scale used along each axis. 

A 

B 

C 

x O 

y 

P 

Fig. .1: A straight line 
graph. 
 

.2.1  Linear Plots 
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iv) Use a plotting symbol such as a dot and encircle it to show the measured 
position of points (See Fig. .2a). In no case, the size of this circle should 
exceed the size of the smallest square on the graph paper.             

v) You should give the graph a suitable caption. 

    (a)                                                                               (b) 

Fig. .3: Drawing graphs with more than one curve. 

vi) If there is more than one curve on the graph, label different curves  (Fig. 
.3a). Alternatively, you can use different notations (dash dot, solid, dash) 

to show different curves (Fig. .3b). 

vii) The curve drawn should be the simplest mean curve that fits the data. In 
the graph shown in Fig. .4, it is easy to see that the data points lie on a 
straight line. This is referred to as best-fit curve. Note that the line may not 
necessarily pass through each observed point. However, it should pass 
through the region of uncertainty for each point. This region of uncertainty 
is depicted as an error bars (small vertical line representing the 
uncertainty in the measurement) around each point in the figure. 

 

Fig. .4: A best fit curve. 

You can use this plotted curve to determine the value of a parameter, where 
the reading is not taken by you. For example, in Fig. .4, there is no 
observation corresponding to time 12 s. However, you can conclude by 
following the plotted curve that the distance of interest is 46 cm.  

A 

C 

B 

Though drawing a best fit 
curve for non-linear data 
may involve extensive 
statistical treatment, the 
method explained here 
gives fairly good fit of the 
linear data being plotted.Distance-Time relationship 

Time (s)

D
is

ta
nc

e 
(c

m
) 
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You will use these graphing techniques in some of the experiments of this 
course such as the experiments on determination of Young’s Modulus by 
bending of beam apparatus and spring constant by spring-mass system.  

 

In Fig. .4, we plotted distance along y-axis and time along x-axis on a linear 
graph paper, since these quantities are linearly related. In some experiments, 
however, we may get data where the relationship between the measured 
variables is not linear and we have to plot a graph where the variables of 
interest are related through a power-law. For example, in a simple pendulum, 
the time and length are related by equation T =   

1/2. In such cases, to draw a 
graph between the time period and the length of the pendulum, you will have 
to calculate square root for each value. This introduces another step in the 
procedure, and is obviously cumbersome.  

Many a times, the variables in a relation may vary over different powers. For 
example, the voltage and current relationship for a forward biased 
semiconductor diode is given by the equation: 

 1exp
kT

qV
I D

SD      ( .1) 

The direct plot of ID Vs VD  will result into an exponential curve, however, if we 
take the logarithm of current values, then, its plot with VD will result into linear 
curve, as shown in Fig. .5. Such plot is called a semi-log plot.   

 

Fig. .5: Semi-log plot of diode current vs. voltage. 

Another example is found in Astronomy. According to Kepler’s law, the period 
of a planet T (time for one revolution around the sun) is related to the semi-
major axis of it’s orbit (R) by the relation 

 R 3 = kT 2, ( .2) 

where k is constant. 

If you consider the experimental data which shows how T depends on R, you 
will observe that the latter varies by three orders of magnitude and T varies by 
two orders of magnitude. In other words, the experimental data follows  

.2.2    Non-linear Plots 
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Eq. ( .2).  For a moment suppose you do not know the exact relationship 
between the variables T and R. Then you can write  

 R = kT n, ( .3)  

where n is constant. In such cases, you can obtain the value of n by taking 
logarithm of (Eq. .3): 

 log R = log k + n log T ( .4)  

Now you can plot log R versus log T on a linear graph paper. The slope of 
straight line obtained will give the value of exponent n.  But again, as 
mentioned above, taking logarithm of each experimental data is rather tedious. 
For convenience, we use a log-log (Fig. .6) graph paper in such cases, so 
that the resultant curve is a straight line and we can easily calculate its slope 
and intercepts.  

Fig. .6: Log-log graph of planet’s average distance from the Sun versus its 
period of revolution around the Sun. 

In your first year lab, you may not be required to use these and we therefore 
end our discussion here.

.3 ERROR ESTIMATION ON GRAPHICAL PLOTS 
In Fig. .7 we have plotted the velocity, V, versus time period, T, which 
represent a linear relationship between them. The result is plotted along with 
the error bar around each data point. 

To determine the error in the value of the slope of the straight line drawn on a 
graph paper (linear, semi-log or log-log), you should draw two lines 
representing the greatest and the least possible slopes which reasonably fit 
the data. 

For the graph in Fig. .7, the error in the slope is defined as  

 
2

slopeminimumslopemaximumslopeinerror  
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Fig. .7: Graph of velocity and time period with error bars. 

  Similarly,  

2
line) slope maximum of intercept line slope minimum of (interceptintercept in error  

Let us now sum up what you have learnt in this unit. 

.4   SUMMARY 
 Graphical representation of observations eases data interpretation; 

 A functional relationship, especially, a linear relationship, between the two 
experimental parameters can be established by visual inspection; 

 Log-log or semi-log plots can be used  to depict non-linear relationships; 

 Unknown parameter value within the experimental range of observation 
can be deduced by plotting a graph; and  

 Error in the slope and intercept can be obtained from a graphical 
representation. 

.5   TERMINAL QUESTIONS 
1. Draw the graph of the equation: y = 2x + 4. Draw the best fit straight line 

and find its slope. 

2. Plot the graph of y versus x for the following set of observation. Draw the 
best fit straight line and obtain its slope. Write the equation of the line you 
have drawn.  

x 0 1 2 3 4 5 6 7 8 

y 4.1 6.1 7.9 10.0 11.9 13.9 16.0 18.1 20.0 
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3. Plot the graph of y versus x for the following data and draw the best fit 
straight line. Determine the slope and the equation of the straight line. 

x 10 11 12 13 14 15 16 17 18 

y 24 26.1 27.8 30 32.2 34 35.8 38.2 40 
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      EXPERIMENT 1
 

MEASUREMENT 
OF LENGTH 

Structure 

1.1 Introduction 
Expected Skills 

1.2 Measurement of the Thickness  
of a Wooden Block using  
Vernier Callipers  

Working with Vernier Callipers 

Measurements using Vernier Callipers 

 
 

1.1   INTRODUCTION 
You must have performed various experiments in a physics laboratory during your school 
days. You know that it is necessary to make different measurements while doing these 
experiments. The simplest measurement is that of length. When we wish to know the 
dimensions of a room or a piece of a land, we use a measuring tape; and we use a metre 
scale when we buy some cloth. You would be familiar with such measurements and may 
have used a measuring tape or a metre scale.  

In the laboratory, however, you will need to measure small lengths, say, the diameter of a 
bob or a metal wire or the diameter of a capillary. These require accuracy better than that 
obtained with a metre scale – of the order of 0.01 cm or even less. For measuring small 
lengths, we use devices like vernier callipers and screw gauge, depending on the accuracy 
required. In some special cases, we also use travelling microscope.  In this experiment, you 
will learn how to use all these instruments for measuring length. You should remember for 
all measuring instruments (used for measuring length or any other quantity) that, 

 

 

 

1.3 Measurement of the Thickness of a 
Paper Sheet using a Screw Gauge 

Working with a Screw Gauge 

Measurements using Screw Gauge 

1.4 Measurement of the Internal 
Diameter of a Capillary using 
Travelling Microscope  

Working with Travelling Microscope 

Measurements using Travelling 
Microscope 

 no measurement can be more accurate than the precision of the 
measuring instrument; and 

 there is a limitation on the accuracy with which data can be taken.
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This means that a measurement can never be exact and there will always be 
deviations from the true value. That is, some uncertainty (error) is always present 
in every measurement. So before you make measurements with any instrument, 
you must have a clear idea of the concept of errors we have discussed in Unit  
of this course. (You will learn that we always quote the result along with the 
error.)  

In the first part of this experiment you will learn how to measure the thickness of 
a wooden block using vernier callipers (Sec. 1.2). Then you will learn how to 
use a screw gauge to measure the thickness of a sheet of paper or the diameter 
of a wire (Sec. 1.3). 

Sometimes in the physics laboratory you have to measure very small distances 
accurately, for example, the width of an interference fringe or the height to which 
water rises in a capillary tube or a small displacement of a needle due to bending 
of beam. For this we use a type of the compound microscope called the 
travelling microscope.  In the third and final part of this experiment, you will 
learn how to focus a travelling microscope and make measurements using it 
(Sec. 1.4). You will find out that while measuring the lengths with the help of a 
travelling microscope, it does not physically touch the object under study, unlike 
the vernier callipers or the screw gauge.  Hence, here you will be performing 
length measurements in the non-contact mode. 

Expected Skills  
The purpose of this experiment is to train you in handling the instruments used to 
measure small lengths. After doing this experiment, you should be able to:  

 obtain the least count and estimate the zero error of  vernier callipers  
and use it to determine the thickness of an object; 

 obtain the least count and estimate the zero error of a screw gauge 
and use it to determine the thickness of a paper sheet or diameter of 
a wire; and 

 focus a travelling microscope and use it to make small length 
measurements in the non-contact mode. 

The apparatus required for this experiment is listed below.  

 

 

 
 

In the first part of the experiment, we describe the vernier callipers, how to find its 
least count and zero error, if any. You will also learn the procedure for measuring 
the thickness of a wooden block using it. 

1.2   MEASUREMENT OF THE THICKNESS OF A 
WOODEN BLOCK USING VERNIER CALLIPERS 

When you wish to measure lengths in the range of 5 mm to 10 cm, with a 
precision better than 1 mm, then you should use vernier callipers. You will be  

Apparatus required  
Vernier callipers, screw gauge, travelling microscope, a wooden block, 
metallic wire/needle or a sheet of paper, a piece of glass capillary, a spirit 
level and a stand with cork clamp. 
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using the vernier callipers in some experiments in the laboratory; e.g. to 
measure the radius of the metal bob used in simple pendulum, the inner / 
outer diameters of the cylinders used as weights in torsional pendulum. In the 
present experiment, you will measure the width of a wooden block using the 
vernier callipers. Before you perform the actual experiment, it is important for 
you to know about the construction and working of vernier callipers.  

1.2.1 Working with Vernier Callipers  

The vernier callipers is a steel apparatus which has two jaws A and B as 
shown in Fig.1.1. Jaw A is fixed to a scale (main scale) of about 15 cm length 
with millimetre markings on it. Jaw B is attached to a small movable scale 
called the vernier scale, V. The object, whose length (a wooden block in our 
case) is to be measured, is held between these two jaws. Measurement of 
length is done by following the procedure given later in this section. 

 

Fig.1.1: Measurement of the thickness of a wooden block with vernier  
callipers 

While using any measuring instrument, it is very important to know its least 
count and any systematic error caused due to instrument setting. In case of 
length measuring instruments, there may be a mismatch between the zero 
markings of the main scale and the moving scale. This is called the zero  
error of the instrument. It is a systematic error, which can be corrected by 
adding (or subtracting) it from the reading you are taking. Now we will discuss, 
in brief, the method of obtaining the least count and zero error of vernier 
callipers.  

a) Least count 

In simple vernier callipers, the vernier scale has 10 divisions which are equal 
to 9 divisions or 9 mm of the main scale (Fig. 1.2).  Thus, the value of each 
vernier division is 0.9 mm and it is 0.1 mm shorter than one main scale 
division. When the jaws are closed so as to touch each other, the zero of  

Fig.1.2: Least count of a vernier callipers. 

the main scale should coincide with the zero of the vernier scale.  Since a 
vernier division is shorter than a main scale division by 0.1 mm, the first 
vernier division will lie 0.1 mm left to the first main scale division. Now if you 

 

B A 
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move the jaw B slowly to the right, such that this 0.1 mm difference 
disappears, the jaw should have moved by 0.1 mm. This would also be the 
width of the gap opened between the two jaws. So, the smallest length that 
can be measured by the vernier callipers is 0.1 mm or 0.01 cm. This is called 
the least count or the vernier constant of the instrument (vernier callipers).   

 
 

You will now learn to calculate the least count of vernier callipers. This method 
can be used for any instrument carrying a pair of MS (main scale) and VS 
(vernier scale). 

Calculating the least count of vernier callipers  

The least count (LC) of a vernier callipers is defined as  

LC = Value of one Main Scale Division (MSD)  Value of one  
                           Vernier Scale Division (VSD) in terms of MSD  

Study Fig. 1.2. Note that the value of 10 VSD is equal to the value of 9 MSD.  
Therefore, we can say that in this case 1 VSD = (9/10) MSD.  Hence, we can 
write the expression for least count as 

 LC  1MSD  1VSD = 1MSD  (9/10) MSD = (1/10) MSD 

For the vernier callipers shown in Fig.1.2, the value of 1MSD = 1 mm.  Therefore, 
 

 cm01.0mm0.1mm 
10
1  LC  (1.1a) 

In your physics laboratory, you may come across some instruments in which 
the vernier scale has more than 10 divisions and the value of 1 MSD is less 
than 1 mm.  One such familiar example is that of travelling microscope, 
which you will handle in the later part of this experiment.  On the travelling 
microscope scale, 49 MSD correspond to 50 VSD and 1 MSD = 0.5 mm. 
Therefore, the least count of the travelling microscope is 

    1 MSD – (49/50) MSD = (1/50) MSD = (0.5/50) mm = 0.01 mm= 0.001 cm
 (1.1b)  

Note that the denominator in the brackets of Equations (1.1a and b) is equal to 
the total number of divisions on the VS. Therefore, in general, we can write  

 LC = 
n
1  value of 1 MSD (1.2) 

where n is the total number of divisions on the VS. Since n = 50 and 1 MSD  
= 0.5 mm for a travelling microscope, we can write its least count (LC) as  

 cm001.0mm01.0mm5.0
50
1  LC  

Other instruments to which a vernier scale is fitted include spherometer, a 
Fortin's barometer and a spectrometer. You will work with these instruments 
while doing the experiments in your laboratory course. 

The least count of vernier callipers is equal to the difference between the 
lengths of one main scale division and one vernier scale division.   
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b) Zero error 

When the jaws of the vernier callipers are in contact, the zero mark of the MS 
should coincide with the zero mark of VS (see Fig.1.3a). In some vernier 
callipers this may not happen. In such a case, the vernier callipers is said to 
have a zero error. The zero error must be determined and accounted for 
while taking measurements with the vernier callipers.   

Suppose that when the jaws A and B touch each other, the zero of vernier 
scale lies to the right of the main scale zero (Fig.1.3b). This error is called 
positive zero error. To obtain the correct measurement we have to apply 
zero correction.  How do we do it? If the mth division of the vernier scale 
coincides with a main scale division, the instrument is showing a reading equal 
to m times the least count. The magnitude of the positive zero error in this 
case is m x LC.  

If the instrument (vernier callipers) has positive error, the zero error has to 
be subtracted from any reading taken by the callipers. 

 

 

 

 

 

 

 

 

Fig.1.3: a) No zero error as zero marks of MS and VS coincide; b) positive zero 
error; c) negative zero error. 

In case the zero of the vernier scale falls on the left of the zero of the main 
scale, the vernier callipers is said to have negative zero error (Fig.1.3c). 
Then  

Magnitude of the negative zero error = (n  m)  LC 

where n is the total number of divisions on the vernier scale and the mth  
vernier scale line coincides with a main scale line. For example, in Fig. 1.3c,   
m = 7, and hence the magnitude of negative error is (10  7)  LC = 3  LC.   

In case of negative zero error, we apply correction by adding a value 
equivalent to the error, to the observed reading of the instrument.   

We assign positive zero error with + sign and negative zero error with  sign. 
So a general rule is that we always subtract the zero error with proper sign 
from the observed reading. 

In your school curriculum, you may have learnt about the vernier callipers. In 
order to refresh your knowledge, perform the following steps: 

(a) 

(b) 

(c) 
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 Identify the main scale (MS) and the vernier scale (VS) on the vernier 
callipers and write the number of divisions on VS: 

No. of divisions on the vernier scale =…………………………………….. 

 Note how many of MS divisions equal all VS divisions: 

…. No. of divisions in the main scale = …. No. of division on vernier scale 

Now calculate the least count of your vernier callipers as follows: 

 Calculate 1 VSD = MSD .........
scale vernier on divisions of No.

scale main on divisions of No.  

 Note the value of 1 division on main scale = 1 MSD = …….. mm.  

 Calculate the least count of vernier callipers using the formula: 

Least Count = Value of (1 MSD  1 VSD) = ………… mm. 

After finding out the least count of the vernier callipers, you will now use it to 
measure the length of some small objects. For this part of the experiment, you 
will need vernier callipers and a solid object like small piece of wood.  

1.2.2 Measurements using Vernier Callipers 

You should now follow the steps given below to measure the thickness of the 
wooden block: 

1. Bring the jaws of the vernier callipers in contact and note whether or not the 
zeroes of the VS and MS coincide.  In case they do not coincide, then it 
possesses a zero error. Do not push the jaws together forcefully to make 
them coincide. Doing so may damage the callipers.  Find out the zero 
error as described above and record it in Observation Table 1.1 with 
appropriate sign (+ for positive and – for negative error). Remember that zero 
error, whether positive or negative, is taken with its sign and always 
subtracted from each measured value. 

2. Record the least count in Observation Table 1.1. 

3. Hold the block between the jaws, as shown in Fig.1.1. 

4. Slide the vernier scale so that the jaw of the vernier scale touches the other 
face of the block. 

5. The position of the zero mark of the vernier scale, as read on the main 
scale, gives a rough estimate of the thickness of the block. If the zero mark 
of VS corresponds exactly to any particular marking on the MS, then that 
reading of MS is the exact reading of the length. However, if the zero mark 
on the vernier scale lies in-between the two markings, say, between       
3.3 cm and 3.4 cm, as shown in Fig.1.4, then the thickness of the block is 
more than 3.3 cm (called the main scale reading), but less than 3.4 cm.  
You can find out how much more it is than 3.3 cm by noting the division on 
the VS that coincides with a MS division. If the fourth division on the VS 
coincides with an MS division, the thickness of the block would be  
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3.3 cm + 4  0.01 cm = 3.34 cm. (If the zero mark of VS corresponds 
exactly to any particular marking on the MS, read the main scale. This 
reading gives the thickness of the block.) 

 

 

 

 
Fig.1.4: Reading a main scale and vernier scale. 

 

 

 

Record your reading in Observation Table 1.1. The graduations on the vernier 
scale are very fine and close together. Therefore, you may find it convenient 
to use a magnifying glass to take readings. 

6. Repeat the steps 3 to 5 at least four times at different points on the same 
faces of the block. You must have realized that this exercise is to minimise 
random errors. 

7. Subtract the zero error (with proper sign), if any, from each measured value 
to obtain correct value and note it in the Observation Table 1.1. 

8. Calculate the mean of corrected values. This will give you the thickness of the 
given block. 

9. Calculate the percentage error using the procedure explained in Unit-  and 
quote your result. 

Observation Table 1.1: Measurement of thickness of a wooden block 
Least count of the vernier Callipers = ………. cm 

Zero error of the vernier Callipers = ……….. cm (with + or – sign)  

Sl. 
No. 

Main 
Scale (MS) 

reading 
(cm) 

Vernier 
Scale (VS) 

reading 

Thickness (cm) 

Measured 
reading 

(=MS+LC VS) 

Corrected reading 
(Measured value   

Zero error) 

1.     

2.     

3.     

4.     

Result: The thickness of the given block is ………..cm ………..cm 

In general, the distance between the two jaws of the vernier 
callipers is given by:  

 MS reading + (vernier reading  least count) 

3 4 

10 5  0 Vernier scale 

Main scale 

Note that vernier scale 
reading is just a number, 
while MS reading is in 
the units of length.
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On completing this part of the experiment, you will discover that vernier callipers 
can be used to measure lengths in the range 0-15 cm with an accuracy of  
0.01 cm. When we need accuracy better than that obtained with vernier callipers, 
we use a screw gauge. In the next part of this experiment, you will work with a 
screw gauge. 

1.3   MEASUREMENT OF THE THICKNESS OF A 
PAPER SHEET USING SCREW GAUGE 

When you want to measure extremely small lengths like diameter of a wire or 
thickness of a paper, you need an instrument with better precision than that of 
the vernier callipers. Later in this laboratory course, you will use a screw 
gauge to measure the radius of thin wire and thickness of the beam in some 
experiments. In this part of the experiment, you will learn how to measure the 
thickness of a paper sheet (or diameter of a wire). But, before proceeding 
further, you should know the parts of the screw gauge. 

1.3.1 Working with a Screw Gauge  

Fig.1.5 shows a screw gauge, in which a screw moves in accurately cut 
grooves. Screw gauge consists of a spindle (screw), a U-shaped frame, a 
hollow shaft (sleeve)  or barrel on which a linear scale is engraved with 
millimetre divisions. It acts as the main scale in the screw gauge. A cylindrical 
collar called a thimble, is attached to the spindle. A circular scale with 100 (or 
sometimes 50) divisions is engraved on this collar. When the thimble is 
rotated, it gives linear displacement to the spindle.  On one side of the frame a 
flat stud called anvil is fitted. The object whose length is to be measured is 
held between the anvil end A and the spindle end B. You can tighten the hold 
properly by rotating the ratchet attached to the screw. 

Fig.1.5: A screw gauge. 

For proper handling of a vernier callipers, you should 

 not apply excessive pressure on the jaws or over-stress them 
while noting zero error or taking readings; and 

 store them in the boxes provided by the manufacturer.
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With a constant use, some wear and tear occurs in the movement of the screw 
on the grooves. As a result, it is also possible that there may not be forward 
linear motion of the screw until a certain rotation is given to the circular head. 
This lagging behind of the linear motion with respect to the circular motion is 
called backlash error. To avoid this, you should always rotate the screw 
gauge in the same direction.  

Like any other measuring instrument, a screw gauge also has a least count 
and may sometimes possess positive or negative zero error. The three 
important parameters we should know about a screw gauge are: pitch, least 
count and zero error. We discuss these briefly before you start using this 
instrument.  

a) Pitch    

The screw of the spindle is the most important part of a screw gauge. It 
has very accurate threads cut on it which, on rotation, move the screw forward 
or backward. The distance moved by the spindle in one complete 
revolution of the screw is called the pitch, P, of the screw gauge (Fig.1.6). 
If we rotate the thimble clock-wise, the spindle will move towards the anvil end 
A. When the two touch each other, the zero mark on the circular scale should 
coincide with the zero mark of the main scale. Now, if we rotate the thimble by 
one complete anticlockwise rotation, the zero mark on the circular scale will 
once again coincide with the main scale mark, and the spindle end, B will be 
separated from the anvil end, A. You can read this separation on the main 
scale. It is equal to the pitch of the screw.  

b) Least Count    

Suppose the pitch of the screw is 0.5 mm and there are 50 divisions on the 
circular scale. Now, if the thimble is rotated only through one division on the 
circular scale, the distance moved by the spindle is:  

(1/50)  pitch = (1/50)  (0.5mm) = 0.01 mm or 0.001 cm 

This is the smallest length that can be measured with a screw gauge. This is 
its least count. Since the least count of a typical screw gauge is 0.01 mm or 
10 micrometer, it is often called a micrometer screw gauge.  

c) Zero Error 

Similar to the vernier callipers, screw gauge can also suffer from a zero error. 
When the anvil end A and spindle end B touch each other but the zeros of the 
circular and main scales do not coincide, the screw gauge is said to have zero 
error. When the ends A and B touch each other and the zeros of the main 
scale and circular scale coincide, the screw gauge is said to have no zero 
error (Fig.1.7a). The zero error is said to be positive if the zero of the circular 
scale is below the zero of the main scale (Fig.1.7b). If the zero of the circular 
scale is above that of the main scale, the zero error is said to be negative 
(Fig.1.7c). As in the case of vernier callipers, the zero error (with its sign) is 
always subtracted from the actual reading of the screw gauge. Hence,  

Fig. 1.6: Pitch of the 
screw gauge. 
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Final Reading = Reading Taken – Zero Error (with appropriate sign) 

 

 

 

 
 

Fig.1.7: Relative positions of the zeros of linear scale and circular scale of a screw 
gauge when its spindle is in contact with anvil for a) no zero error;  
b) positive zero error; and c) negative zero error. 

The screw gauge is a sensitive device and you should use it carefully. 

 

 

 

 
 

We hope you can now confidently work with a screw gauge and take necessary 
precautions while using it to measure the length. For this part of the experiment 
you will need a screw gauge and a thin object like sheet of paper or a piece of 
wire or a pin. 

1.3.2 Measurements using Screw Gauge 

You should follow the steps listed below to measure the thickness of the given 
object:   

1. Take a screw gauge and check whether or not its ratchet functions properly.  
If not, change the screw gauge.   

2. Note the length of the smallest division on the linear (or main) scale and 
record it in Observation Table 1.2. Rotate the screw through ten complete 
rotations and note the distance advanced on the Main Scale on the screw. 
From this, you can calculate the distance by which the screw (that is spindle) 
moves in one complete rotation. This is the pitch of the screw. Note the total 
number of divisions on the circular scale (CS). By dividing the pitch of the 
screw by the total number of divisions on the circular scale, N, you will obtain 
the least count (LC). Usually, the LC of a screw gauge is 0.001 cm.  

3. Touch the anvil with spindle and note the zero error, if there is one. Note it 
down with proper sign in the Observation Table 1.2. 

4. Place the sheet/wire between the anvil and spindle. Tighten the screw so that 
the object is just held between them. Do not apply excess pressure to tighten 
the screw. You can apply optimum pressure for tightening by rotating the 
ratchet.  

(a) (b) (c) 

While handling a screw gauge, you should take care of some 
important points: 

 Do not over-tighten the gauge; and 
 Adjust the screw gauge to the point where it should read zero.  In 

case it shows a different reading, note the error. 
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5. Note the readings on the linear and circular scale and record them in 
Observation Table 1.2. 

6. Repeat steps 4 and 5 at least six times by taking the thickness 
measurements at different places. In this way, you can account for non-
uniformity of the object thickness. Record all your observations in 
Observation Table 1.2.  

7. Subtract the zero error (with its sign), if any, from each measured value. 
Calculate the mean value of the thickness of the given sheet/wire. 

8. Calculate the average value and error and record your result as before. 

Observation Table 1.2: Measurement of thickness 

The length of the smallest division on the  
linear scale      = ……..………... mm 
Distance advanced by the screw when it is  
given ten rotations       = D  = …………... mm 
Pitch of the screw                           = P (= D/10) = ………………..  mm 
Number of divisions on the circular scale (N) = ………………..  

Least count of the screw gauge      LC =
N

Pitch = …… mm = …… cm 

Zero error (with + or – sign)              = ………. mm 

Sl. 
No. 

Linear 
scale 

reading 
LS (mm) 

Circular 
scale 

reading  LC  
= CS (mm) 

Thickness (mm) 
Measured 
(=LS+CS) 

Corrected 
(Measured value 

 Zero error) 
1.     
2.     
3.     
4.     
5.     
6.     

     Average thickness = ………. mm 

Result: The thickness of the sheet is ……… cm  ……….. cm 

So far, you have learnt about devices used for length measurement with greater 
accuracy. In these cases, the object to be measured was always in contact with 
the measuring instrument. Now we will discuss about travelling microscope, 
which makes measurements in non-contact mode. 

1.4   MEASUREMENT OF THE INTERNAL 
DIAMETER OF A CAPILLARY USING 
TRAVELLING MICROSCOPE 

In various experiments you need to measure small lengths from a little 
distance away from the object. For example in the bending of beam 
apparatus, you need to measure a minute displacement of a metal beam 
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caused by applied weights hanging to it. Also you need to precisely measure 
the distance between the bright and dark fringes formed by interference 
pattern in some optics experiments. For such measurements in non-contact 
mode, we make use of a travelling microscope. In this part of the experiment, 
you will be measuring the internal diameters of a glass capillary tube using it.    

For this part of the experiment you will need a travelling microscope, spirit 
level, stand and a piece of capillary tube. But, before doing the experiment, 
you need to set the travelling microscope on your work table and understand 
how it works. 

1.4.1 Working with Travelling Microscope 

In Fig.1.8 you see a picture of a typical travelling microscope. It is basically a 
compound microscope which can be moved horizontally and vertically.  

 

Fig.1.8: A travelling microscope. 

It has two lenses: an eyepiece (E) and an objective (O). You can move it 
vertically along PQ using the screw S1 and horizontally along RT using the 
screw S2. The distance moved on the vertical scale is measured using the 
main scale M1 and the associated vernier scale V1. The distance moved on the 
horizontal scale is measured using the main scale M2 and the associated 
vernier scale V2. You should view the microscope through the eyepiece while 
the objective lens faces the object being viewed.  You can focus the 
microscope with the help of the screw S3 attached to its body.  

1.4.2 Measurements using Travelling Microscope 

Setting up the microscope 

The eyepiece has a crosswire (shown as dotted lines in Fig. 1.9) which you 
may focus by sliding the eyepiece in or out.  Now, to set the microscope, 
follow the steps given below: 

 There are four levelling screws (L) on the base of the microscope 
(Fig.1.8). To start with you should ensure that the base of the travelling 
microscope is perfectly horizontal by using a spirit level and these screws.  

Fig.1.9: Coinciding the 
crosswire with a cross 
drawn on a piece of 
paper.
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 Next, check that there is a free movement of the microscope in both the 
vertical and horizontal directions using the screws S1 and S2.  

 Keep the microscope in the vertical position. Mark a cross on a small 
piece of paper with a pen (shown by solid lines in Fig.1.9) and place it 
below the objective. 

 Gently move the eyepiece using the screw S3 to focus on the cross, such 
that the crosswires of the eyepiece coinciding with centre of the cross and 
are clearly visible. In this condition, the microscope is said to be focussed. 

 Yet another thing you need to do before doing the actual experiment is to 
calculate the least count of the two vernier scales V1 and V2. You can 
calculate it using the formula for the least count. (Usually both the vernier 
scales have the same least count.) 

Now that you have set the microscope, you are ready to use it to measure the 
inner diameter of a capillary tube.  

Procedure of Measurement 

1. Hold the capillary tube horizontal in the clamp of a retort stand, as shown 
in Fig.1.10. Turn the microscope tube into horizontal position, such that 
the objective faces the capillary and focus it on the end of the capillary, 
which has a bore.  

2. Adjust the travelling microscope to such a position that the vertical 
crosswire is exactly at the centre of the bore and horizontal crosswire just 
touches the bore at point A as shown in Fig. 1.11a. Note down the main 
scale and vernier scale reading on the vertical scale (M1 and V1) of the 
travelling microscope and enter the reading in the column A in 
Observation Table 1.3. 

 

 

 

 

 
 
               (a)                                 (b)                               (c)                        (d) 
 

Fig.1.11: Different positions of the crosswire of the travelling microscope while 
measuring the diameter of a capillary tube. 

3. Now using the screw S1, move the travelling microscope in the vertical 
direction in such a way that the crosswire touches the point exactly 
opposite to A (the point B in Fig. 1.11b). Note down the main scale and 
vernier scale reading on the vertical scale of the microscope and enter the 
reading in the column marked B in the observation table.  

4.  Next, bring back the horizontal crosswire in the middle of the bore and 
move the travelling microscope in the horizontal direction using S2 in such 

Fig. 1.10: Capillary tube 
held in a retort stand.

A 

B C D 
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a way that vertical crosswire touches the bore at point C as shown in 
Fig.1.11c. Note down the main scale and vernier scale reading on the 
horizontal scale (M2 and V2) of the microscope in this position and enter 
the reading in the column marked C. 

5.  Finally, move the travelling microscope in the horizontal direction in such 
a way that the vertical cross wire touches the bore at the point exactly 
opposite to C (point D in Fig. 1.11d). Note down the main scale and 
vernier scale reading on the horizontal scale of the microscope and enter 
the reading in the column marked D. 

6. Using the above readings, you can calculate the inner diameter of the 
tube in vertical and horizontal directions. By calculating the mean of the 
vertical and horizontal readings, you can find the internal diameter of the 
tube. 

7. Repeat steps 2-5 two more times to get 3 sets of readings and calculate 
the average diameter of the capillary tube. 

Observations 

Least count of vernier scale V1:  

1

1
1 scaleverniertheondivisionsofnumber

ononeofvalue
V

MMSDLC = …………. cm. 

 Least count of V2: 

2

2
2 scaleverniertheondivisionsofnumber

ononeofvalue
V

MMSDLC = …………. cm            

Note that: 
Reading = MS (main scale reading) +  

      VS (vernier scale reading) × LC (LC1 or LC2) 

Observation Table 1.3: Microscope readings 

Number of 
Observations 

Microscope readings for 
crosswire in position 

Internal diameter 

A  
(cm) 

B 
(cm) 

C 
(cm) 

D 
(cm) 

Vertical 
Y=B A 

(cm) 

Horizontal 
X=D C 
(cm) 

Diameter 
=(X+Y)/2 

(cm) 
1.       d1= 
2.       d2= 
3.       d3= 

 Average diameter= 
3

321 ddd  cm = …………………. cm. 



 

44

BPHCL-132                                                            Mechanics: Laboratory  

DETERMINATION OF 
MOMENT OF INERTIA 

OF A FLYWHEEL ABOUT 
ITS AXIS OF ROTATION 

Structure 

2.1 Introduction 
Expected Skills 

2.2 Theory of Flywheel 
 

2.1   INTRODUCTION 

In Experiment 1, you have learnt how to measured lengths of small orders using apparatus/ 
devices like vernier calliper and screw gauge. In some special cases, you make use of 
travelling microscope as well. Time and mass are other fundamental quantities in Physics. 
You will be learning how to measure mass in other experiments of this lab. In this 
experiment, you will get an opportunity to determine the moment of inertia of a flywheel. In 
this process you will be measuring diameter of the axle of the flywheel and time for the 
number of rotations that the flywheel makes before it comes to rest. We begin our discussion 
by presenting the general concept of moment of inertia and the moment of inertia of a 
flywheel in particular, for completeness. We shall then explain the procedure for doing the 
experiment. 

Expected Skills  
After performing this experiment, you should be able to:  

 investigate how the moment of inertia depends on the mass suspended from the cord 
and the distance through which it falls; and 

 determine the moment of inertia of a flywheel. 

 

2.3 Procedure for Measuring 
Moment of Inertia  

EXPERIMENT 2
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The apparatus required for this experiment is listed below. 

 

 

 

2.2   THEORY OF FLYWHEEL 

In Unit 12 of the theory course on Mechanics, you have learnt the concept of 
inertia. According to Newton’s first law, every object continues to be in a state 
of rest or uniform motion in a straight line unless an external force acts on it. It 
means that every object offers resistance to change in its state of motion or 
rest. This resistance or inertness of bodies to change in motion or state of rest 
is called inertia. Inertia is directly proportional to the mass of the body. That is, 
in translational motion, mass is a measure of inertia. In rotational motion, 
where a body rotates about a fixed axis, the resistance offered depends not 
only on its mass but also on the distances of various parts of the body from the 
axis of rotation. The resistance of a body to change in rotational motion is 
called moment of inertia (MI). So we can say that the moment of inertia is the 
rotational analogue of mass. You have learnt about it in Block 3 of the theory 
course  on  Mechanics. It has applications in drawing water from a well for 
irrigation where bullocks move in a circular path. In practice, a flywheel is fixed 
on the axle of moving parts of machines. It helps to steady the motion; absorb 
energy when a machine runs faster and supplies energy when it tends to slow 
down. Let us determine the expression of the MI of a flywheel.  

Moment of inertia of a flywheel 

Study Fig. 2.1. It shows a rigid body of mass M rotating about a fixed axis 
passing through O. Note that 

i
imM where im is the mass of the ith 

particle. All individual particles of the rigid body describe circular paths about 
the axis of rotation. Note that the linear velocity and distance from the axis of 
rotation are different for each particle but the angular velocity ( ) of all 
particles is the same. 

The kinetic energy of a particle situated at a distance ri from the axis of rotation 

and moving with linear speed vi is .
2
1 2

iivm  Since vi = ri , we can write the 

expression of kinetic energy as .
2
1 22

ii rm  Thus, the expression of total kinetic 

energy (KE) of the body rotating about a fixed axis is 

 22
2
1 KE ii rm  

If  is constant, we can rewrite it as  

i
ii rm 222

2
1

2
1KE   

Fig. 2.1: A rigid body. 

vi

O 

ri 

Apparatus required 

A flywheel, weight box (about 100 g, 200 g, 300 g etc.), stop watch, meter 
scale, a cord/string, vernier callipers.
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where is the moment of inertia: 2
ii rm of the body about the axis of 

rotation. 

The moment of inertia of a body about a given axis is defined as the sum 
of the products miri

2 taken for all particles making up the body; mi is the 
mass of the ith particle, and ri, its distance from the axis of rotation. 

Note that the moment of inertia is not a constant quantity. It depends on the 
manner in which the mass is distributed about the axis of rotation. For example, 

the moment of inertia of a cylinder about its own axis is 2

2
1 Mr  (Fig. 2.2a) while 

its moment of inertia about an axis passing through its middle point and 

perpendicular to the cylinder’s axis is 
412

22 rM as shown in   

 Fig. (2.2b).  

Fig. 2.2:  Moment of inertia of a cylinder  (a) about its own axis; (b) about an axis 
passing through its middle point and perpendicular to the cylinder’s axis. 

The flywheel  

A flywheel is a heavy wheel with an axle as shown in Fig. 2.3. The mass of the 
flywheel is concentrated mostly in the rim. In your physics laboratory, you will 
notice that the wheel is set up in a wall with axle at a suitable height from the 
ground.  

One end of a string is fixed to a small peg/pin on the axle and its other end 
carries a mass M. The string is completely wrapped around the axle. When the 
mass M is released, the string unwinds itself, thus setting the flywheel in rotation.  

Axle

Fig. 2.3: A flywheel with an axle. 

412

22 rM

(a) (b) 

2

2
1

Mr
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As the mass M falls, the rate of rotation of the flywheel increases till it 
becomes maximum when the string leaves the axle and the mass drops off.  
Suppose that the vertical height through which mass M drops before the string 
leaves the axle is h. So we can say that weight Mg, falls through a vertical 
height h and loses potential energy, PE (= Mgh). It is used in imparting linear 
velocity to the mass and the angular velocity to the flywheel. We denote these 
by v and , respectively, at the instant the mass drops off. 

SAQ  1  
What considerations lead us to choose an appropriate mass? 
 
We can say that potential energy is used up in  

i) imparting rotational kinetic energy 2
2
1 to the flywheel,  where  is 

the moment of inertia of the flywheel about the axis of rotation and , 
its angular speed, 

ii) doing work against friction at the axle, and 

iii) generating kinetic energy in the falling weight 2

2
1 Mv . 

You will note that the flywheel continues to rotate after the weight is detached 
from the peg. Suppose it makes n rotations in time t before coming to rest. 

Then the average angular velocity of the flywheel is 2 .n
t

2 n  Assuming that the 

motion of the flywheel is uniformly retarded by the frictional force at the axle 
and once the final angular velocity is zero, its initial angular velocity must be 
(see margin remark) 

 
t
n4               (2.1) 

Now, the kinetic energy of the flywheel is 2
2
1 and this is dissipated in n 

rotations of the wheel. The energy lost per rotation in overcoming friction is 

.
2
1 2

n
  

If at the start of the motion the string was wrapped n1 times round the axle, the 
potential energy of the falling weight used up in overcoming friction is 

.
2
1 2

1 n
n  Also if v is the velocity of the falling weight at the moment it leaves 

the peg, its kinetic energy is given by .
2
1 2Mv  Hence, we can write  

 2212
2
1

2
1

2
1 Mv

n
nMgh  (2.2) 

On substituting ,rv  we can rewrite Eq. (2.2) as   

After the mass detaches, 
its angular velocity 
decreases on account of 
friction and after some 
time t, the flywheel finally 
comes to rest. At the time 
of detachment of the 
mass, the angular velocity 
of the wheel is  and when 
it comes to rest its angular 
velocity is zero. Hence, if 
the force of friction is 
steady, the motion of the 
flywheel is uniformly 
retarded and the average 
angular velocity during this 
interval is equal to /2. 
Thus 

/2 = 2 n/t   = 4 n/t 
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 2212
2
11

2
1 Mr

n
nMgh  

where r is the radius of the axle.   

On rearranging the terms of the above expression, we get   

n
n

Mr

n
n

Mgh

n
n

MrMgh

1

2

121

2
2

11

2

1

2

(2.3)

Thus by observing time t and taking the values of n and n1 for the flywheel, the 
moment of inertia can be calculated using Eq. (2.3). 

2.3   PROCEDURE FOR MEASURING MOMENT OF 
INERTIA 

Follow the steps given below: 

1. Take a vernier callipers and determine its least count. You have learnt this 
in Experiment 1.  

 Identify the main scale (MS) and the vernier scale (VS) on the callipers 
and write the number of divisions on VS: 
No. of divisions in the vernier scale = ……………………………………. 

 Note how many of MS divisions equal all VS divisions: 

... No. of divisions in the main scale = .. No. of divisions on vernier scale 

 Calculate the least count of your vernier callipers. 

Measure the diameter of the axle in two mutually perpendicular directions 
as shown in Fig. 2.4 at a number of positions. Record your observations 
taking care of zero error (if any) in the Observation Table 2.1. Determine its 
mean value. Note that a small error in the value of r will influence the result 
adversely because the expression of  contains r 

2 term. 

2. Take a string whose length is less than the height of the axle from the floor. 

3. Make a loop at one end of the string and put it round the peg (a brass pin 
fitted on the axle of the flywheel as shown in Fig. 2.3). 

4. Rotate the wheel anticlockwise with hand and wrap the string evenly and 
uniformly around the axle. Make sure that there is no overlapping of or 
gaps between various loops. When almost the whole string has been 
wound, mark on the string where its contact with the axle just ceases. 
Count the number of turns wound and note them under n1 in Observation 
Table 2.2. It is expected that in your experiment value of n1 will be 
constant.  

5. Attach a mass say, 100 g on the free end of the string. 

6. When the mass is just below the rim, make a reference mark on the wall. 

Fig. 2.4: Axle of the 
flywheel. 

D 

A 

C 

B 

d1 

d2 
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7. Release the mass. You will note that the string gets unwrapped and the 
flywheel moves in clockwise direction.  

8. If you are working in pairs, one of you should start counting the number of 
rotations of the flywheel and the other one should start the stop watch at 
the moment the mass detaches. Count the number of rotations (n) that the 
flywheel makes before it comes to rest. Stop the stop-watch just when the 
flywheel comes to rest. 

9. Record the time for which the flywheel continues to rotate after the 
detachment of the mass (t). 

10. Measure the length of the string between the loop and the mark at the 
other end, h, the distance descended by the mass. Record the readings in 
Observation Table 2.2. 

11. Repeat steps 4-10 by making the flywheel rotate in the anticlockwise 
direction. 

12. Repeat steps 4-11 by attaching different masses on the string. 

Observation Table 2.1: Measurement of the diameter of the axle of the 
flywheel  

Least count of the vernier callipers  = ……………………… cm 
Zero error (With proper sign + or ) = ……………………… cm 

S.No. Reading along AB 
d1(cm) 

Reading along CD  
d2(cm) 

(d1+d2)/2 
(cm) 

1.    

2.    

3.    

4.    

5.    

Mean diameter (d) =……………………….cm 
(% error)=…………………….  
Mean radius of the axle r = d/2 = ……… …. cm 

Observation Table 2.2: Measurement of h, n, n1 and t 

Least count of stop-watch = ……….s 

Set 
No. 

Mass  
M(g) 

Rotation 
 

Height 
h(cm) 

n1 n t (s) 

Measured Average Measured Average 

1 100  
Clock-wise       

Anti-clockwise    

2 200 
Clockwise       

Anti-clockwise    
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Calculations: 

The moment of inertia of the flywheel can be obtained using Eq. (2.3). In this 
equation, the value of  is substituted. Hence, the expression can be rewritten 
as 

 

n
n

Mr

n
n

t
n

Mgh
1

2

1
2

2
11)4(

2

Calculate the values of moment of inertia ( ) for all the sets separately using 
the above formula. Report your result by taking the mean value of . 

Result: 

Mean value of moment of inertia (  ) of the flywheel about its axis is  

= ……….g cm2  = ………kg m2 

 

 

 

 

 

 

 

 
 

 

SAQ  2 
How does moment of inertia depend upon the axis of rotation? 

Precautions for Minimization of Error 

1. The string should be uniformly and evenly wound on the axle.  

2. The stop-watch should be started at the instant when the string 
leaves the peg. 

3. The loop slipped over the peg on the horizontal axle should be loose 
so that when the string has unwound itself completely, there is no 
tendency for the string to rewind in the opposite direction. 

4. The axle should be oiled well to minimize friction. 
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DETERMINATION OF 

YOUNG’S MODULUS BY 
BENDING OF BEAMS 

Structure 

3.1 Introduction 
Expected Skills 

3.2 Theory of Cantilever 
 Working Principle of a Cantilever 

 Bending Moment 

 Depression at the Free End of a  
Cantilever  
 

3.1   INTRODUCTION 
In the previous experiment, you have learnt about the concept of moment of inertia and 
measured the moment of inertia of a flywheel. In some experiments of this course you will 
measure certain elastic properties of matter about which you have studied in school physics. 
In this experiment you will learn to determine Young’s modulus of a material by the method 
of bending of beams. Young’s modulus is an indicator of how elastic a one-dimensional 
object is when a force is exerted along its length. In the  Sec. 3.2, we briefly describe the 
underlying theory. In Sec. 3.3, we describe the procedure for measuring depression in a 
beam using a microscope. In Sec. 3.4, you will learn how to perform the experiment and take 
measurement of depression in a beam using a telescope and an optical lever. Finally in Sec. 
3.5, you will compare the accuracies in measurement of depression using microscope and 
telescope methods. 

In the next experiment, you will learn to measure the modulus of rigidity of a wire using 
Maxwell’s needle. 

Expected Skills 
After performing this experiment, you should be able to: 

 focus a microscope and a telescope on a given object; 

 remove parallax error; 

3.3 Procedure for Measuring 
Depression in a Beam using a 
Microscope 

3.4 Measurement of Depression in 
a Beam using a Telescope and 
an Optical Lever 

3.5 Comparison of Accuracies 
 

EXPERIMENT 3
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 measure small depressions; 

 measure depression of the beam using (i) a microscope and (ii) a 
telescope and optical lever arrangement and compare the accuracies of 
the two methods; and 

 calculate the value of Young’s modulus of elasticity. 

The apparatus required for this experiment is given below. 

 

 

 

 

Let us now describe the underlying theory of this experiment. 

3.2   THEORY OF CANTILEVER 

If you press a rubber ball or a piece of sponge, you will observe that their 
shape undergoes a change. What happens when you stop pressing them? You 
will observe that they regain their original shape. In fact, all bodies can, more or 
less, be deformed by a suitably applied force and when the deforming force is 
removed, they tend to recover their original state.  The simplest case of 
deformation is observed when we stretch a wire fixed at one end. Addition of 
further weight at its other end increases its length.  When the suspended 
weight is removed from the wire, it tends to come back to its original length.  
You may similarly have observed that a train running over a bridge produces a 
depression in the rails. However, they attain their normal state once the train 
has passed. It means that a body opposes any change in its shape and/or size 
by an external force. And once the external force is removed, the body tends to 
regain its original normal state. This property is called elasticity. Greater the 
force necessary to produce deformation in the body, more elastic it is said  
to be. 

When a body is subjected to a deforming force, an opposing force comes into 
play and tends to resist the effect of applied force. In equilibrium state, the 
restoring force is equal to the applied external force. The restoring force per 
unit area set up inside the body is called stress. The fractional change in the 
length, volume or shape of the body is termed as strain. For example, when a 
wire is stretched by applying a force along its length, i.e., normal to its  
cross-sectional area, the change occurs in its length. The change in length per 
unit original length of the wire is called longitudinal strain. The ratio of stress 
to longitudinal strain, within the elastic limit, is called Young’s modulus. The 
value of Young’s modulus depends on the nature of the material rather than 
the physical dimensions of the sample.      

Apparatus required 

A rectangular steel beam, two knife-edges, a travelling microscope, a pin, 
an optical lever and scale arrangement, a telescope, metre scale, a 
hanger for hanging weights in the middle of the beam, a set of  
half-kilogram weights, vernier callipers and a screw gauge.

The maximum stress a 
material can sustain 
without undergoing 
permanent deformation 
is termed as its elastic 
limit.
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Fig. 3.2: A beam 
supported near the two 
ends and loaded at the 
centre.

The knowledge of Young’s modulus is vital for bridge design as we need to 
know the precise deformation (depression) in a loaded structure and its parts. 
Refer to Fig. 3.1. When a train passes over the bridge, the beam bends. Its 
upper surface is compressed whereas the lower surface is stretched. These 
deformations are transmitted to other parts of the bridge also. Young’s 
modulus also enables us to know the stress which a body, say the connecting 
rod or piston of a steam engine or a girder, can bear.  (You must have 
observed the girders and beams used in bridges and high rise buildings. The 
girders are manufactured with their cross-section in the form of the letter . In a 
beam of rectangular cross-section, the longer side is used as the depth.) In 
this experiment you will learn to determine the Young’s Modulus using bending 
of the beam. 

 

Fig. 3.1:  A railway engine moving over a railway bridge produces depression in 
the beam. 

When a beam is supported near its ends and loaded at the centre, it shows 
maximum depression at the loaded point. However, the depression produced 
in the beam depends on its material; in a steel beam, it is so small that you 
cannot observe it with unaided eye.  Refer to Fig. 3.2, which shows a beam 
supported on two knife-edges indicated by A and B. Suppose that it is loaded 
in the middle at C with a weight W. The reaction at each knife edge can be 
taken to be (W/2) in the upward direction. In this position, the beam may be 
considered as equivalent to two inverted cantilevers (read the margin remark), 
fixed at C. The bending in these two cantilevers will be produced by the 
reaction load – acting upwards at A and B. Therefore, it is important for us to 
know how the bending is produced in a cantilever and on what factors it 
depends. 

Consider the cantilever shown in Fig. 3.3a.  Suppose that, weight W1 is acting 
at the free end. As soon as the beam is loaded, it bends. Do you know why? 
To discover answer to this question, consider the section P1QRP2 of the beam. 
Since the load W1 has been applied at the free end of the beam, the restoring 
force acts vertically upward along P2 P1. These two forces, the load and the 
restoring force, being equal and opposite, form a couple. You will recall from 
your school physics and Unit 12 of Block 3 of the theory course on Mechanics 
that a couple has the tendency to rotate a body. However, a cantilever cannot 

3.2.1    Working Principle of a Cantilever

A beam is a bar of 
uniform cross-section 
(circular or rectangular) 
of a homogeneous, 
isotropic (same 
properties at all points 
and in all directions) 
elastic material.

A cantilever is a beam 
fixed horizontally at one 
end.



 

54

BPHCL-132                                                             Mechanics: Laboratory  

rotate because it is fixed at one end. Therefore, the beam bends in the 
clockwise direction. This is indicated by the arrow. For this reason, this couple 
is called bending couple and the moment of this couple is called bending 
moment. 

You may now ask: How can a beam be in equilibrium when a couple acts?  
This can happen when a balancing couple is acting on the beam. To know 
how balancing couple is formed, let us understand what changes take place in 
the interior of the beam when its free end is loaded. For this purpose, imagine 
the beam to be made up of a large number of small elements placed one 
above the other. These small elements are called filaments.  When a 
cantilever is loaded, the filaments in the upper-half of the beam are stretched 
and the filaments in the lower-half are compressed. However, a surface  
(or filament) exists in the middle, which is neither stretched nor compressed.  
This surface, known as neutral surface, is denoted by EF in Fig. 3.3b. 

 

                              (a)                                                                                     (b) 

Fig.3.3:  a) When a cantilever is loaded, it bends; b) filaments in the interior of a 
cantilever under the action of a bending couple. 

Due to changes induced by the couple, restoring forces are developed in the 
filaments, as shown in Fig. 3.4. Above the neutral surface, these forces act 
towards the fixed end of the beam and tend to oppose extension. On the other 
hand, below the neutral surface, restoring forces act towards the loaded end 
and oppose further compression. These two sets of forces act in opposite 
directions and their moments about the neutral surface are directed in the 
anticlockwise direction (indicated by dotted arrows). This direction is opposite 
to that in which the beam has been bent due to the bending couple. This set of 
forces constitutes balancing couple and tends to restore the beam to its 
original condition. When the beam is in equilibrium, the moment of couple is 
equal to the bending moment. You may now like to know the factors on which 
the bending moment depends. 

3.2.2    Bending Moment

Consider a small portion of the beam shown in Fig. 3.5a. It is bent in the form 
of an arc. Suppose that an element ab on the neutral surface subtends an 
angle  at the centre of curvature. Also let R be the radius of curvature of the 
part a0b0 of the neutral surface. Then the length of portion a b of a filament, 

 
 

Fig. 3.4: The moments 
of forces about the 
neutral axis indicated 
by dashed line oppose 
bending. 
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which is at a distance z from the neutral surface (filament), can be expressed 
as a b  = (R + z) . 

When the beam is not bent, the length of this filament is equal to the length R  
of the neutral filament. Therefore, increase in length can be written as 

a b  a0b0 = (R + z)   R  = z  (3.1) 
Hence 

Longitudinal strain =
R
z

R
z

lengthOriginal
lengthinIncrease  (3.2) 

Now consider a section LMNT, which is perpendicular to the length of the 
beam and its plane of bending, as shown in Fig. 3.5b. In this section, consider 
a small element of area a at a distance z from the neutral surface. The strain 
produced in the filament passing through this area will be z/R. 

 
 
 
 
Fig. 3.5: a) A small portion of the beam in strained condition; and  

b) LMNT is the cross-section of the beam perpendicular to  
its length and the plane of bending.  

From the preceding sub-section, you may recall that whenever the length of a 
filament increases, a force acts on the filament towards the fixed end of the 
beam.  You can calculate the magnitude of this force by noting that 

 
strainalLongitudin

StressY  

so that stress is a product of Young’s modulus of the material of the beam and 
longitudinal strain. This shows that stress on area a is   

 
R
zYS  (3.3) 

And the magnitude of force acting on area a is given by 

 
R
zaYF StressArea  (3.4) 

Moment of this force about the neutral surface is equal to the product of force 
and its distance from the neutral surface: 

M z
R
zYa  

R
zYa

2
 (3.5) 

The total moment of the forces acting on all the filaments in the section LMNT 
(or in the beam) is given by: 

(a) (b) 

Small area a
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 gR
Yaz

R
Y

R
Yaz 22

 (3.6) 

where 2azg is the moment of inertia of the beam. Thus, the bending 

moment of the beam is given by .gR
Y  

You may now like to know the relation between moment of the restoring 
couple and the depression at the free end of the cantilever. 

3.2.3    Depression at the Free End of a Cantilever 
 
Refer to Fig. 3.6. It shows a cantilever of length loaded at the free end. AB 
represents its neutral axis.  Let us choose the x-axis along its length and the  
y-axis vertically downwards.  When the free end of the cantilever is loaded with 
a load W1, the maximum depression occurs at its free end. The neutral axis 
takes new position AB   and the end B is depressed by . Consider a section P 
of the beam at a distance x from end A.  Due to the load W1, the bending 
moment acting on this section is given by  

 W1  PB = W1 (  x)   

Since the beam is in equilibrium, this must be equal to 
R

Y g , the moment of 

resistance to bending. Thus, we can write 

  1
gY

W x
R

Y
x

R
 (3.7) 

 

Fig. 3.6: A cantilever of length loaded at the free end.

Since the neutral surface remains unstretched, its radius of curvature (R) at 

any given point is given by the relation 2

21
xd
yd

R
(read the margin remark). 

Substituting this value of R in Eq. (3.7), we get 

 2

2
1 )(

xd
ydYIxW g   

   or           x)(
YI
W

xd
yd

g

1
2

2
 (3.8) 

Integrating Eq. (3.8) twice with respect to x (read the margin remark), we get  
the value of depression ( ) at the free end: 

2az is moment of 
inertia, g of the beam 
about the neutral 
surface.  Therefore, it is 
equal to AK2, where A is 
area of cross section of 
the beam and K is its 
radius of gyration about 
the neutral surface.  For 
a rectangular cross-
section, A = b  d and 

12

2
2 d

K , where b is 

length and d is width of 
the rectangular portion. 

 
12

3
2 bdAKg      (i)    

For a circular cross-
section, A = r 2 and  

K 2 =
4

2r
 where r is its 

radius. 

2
4

4g
r

AK
4r2

4g AK
r

      (ii)

Refer to any elementary 
book on differential 
calculus. The complete 
expression for radius of 
curvature is given by 
 

   
2 2

3
2 2

1

1

( / )d y dx

R
dy

dx

(
22 2dy

11
dydydyd

1
dxdxdxd

 

 
For small bending, 

1dy

dx
1 and we can 

ignore it in comparison 
to one in  the 
denominator of above 
expression.  This leads 
us to simple expression. 

   
2

2

1 d y

R dx

d

d
 

  
 
x
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gYI
W
3

3
1  (3.9) 

Thus the depression at the free end of the cantilever is 
gYI

W
3

3
1 .  

SAQ  1 –  Depression in a cantilever 
By looking at Eq. (3.9), list the factors on which the depression at the free end 
of a cantilever depends. 

Now refer again to Fig. 3.2.  If the length of the beam AB is L, the length of 
both cantilevers (AC or BC) will be L/2. Since the reaction at each knife-edge 
is  W / 2, we can assume that each cantilever (AC or BC) is loaded at the free 
end by a load W/2. Then Eq. (3.9) can be used to calculate elevation  of A or 
B above C by substituting W1 = W/2 and  = L/2: 

 
gY

LW

3
22

3

 

     
gY

WL
48

3
 

The elevation of A or B above C is the same as the depression of C below A  
and B. Therefore, on rearranging the above result, you can write 

 
g

WLY
48

3
 

For a beam with a rectangular cross section of width b and depth d,  
g = bd 3/12.   Hence, in terms of the dimensions of the beam, the expression 

for Young's modulus simplifies to  

 
3

3

4 bd
WLY  (3.10) 

From this result, you will note that to determine Young’s modulus, you have to 
measure the depression at the centre of the beam when it is loaded with a 
known weight W. For steel bars, the magnitude of depression is very small, 
and has to be measured very accurately. For this purpose, you will learn how 
to use a microscope, telescope and the optical lever arrangement. Let us now 
describe the procedure for measuring .  

3.3   PROCEDURE FOR MEASURING 
DEPRESSION IN A BEAM USING A 
MICROSCOPE 

Follow the steps given below to measure the bending of beam by a 
microscope: 

1.  Place the given beam horizontally on the knife-edges, as shown in  
Fig. 3.7.  See that equal (but small) portions of the beam project beyond 
the knife-edges and the smaller side of its cross-section is vertical.   

Integrating Eq. (3.8) with 
respect to x we get 

 1

2
1

2
C

x
x
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W

xd

dy

g

  

where C1 is constant of 
integration. 

When x = 0, 0
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At the free end of the 
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Hence again integrating, 
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2. Suspend a hanger for loading the beam, exactly at the centre, between 
the two knife-edges. Attach a small pin (vertically) at the centre of the 
beam with the help of wax for reading the position of the beam as shown 
in the figure.  

3. Focus the travelling microscope on the pin and coincide its horizontal 
cross-wire with the tip of the pin.  If you are not able to focus the 
microscope on the pin, you should seek the help of your counsellor.   

4. Before you start taking observations, you should calculate the least count 
of the vernier callipers of the travelling microscope. For this purpose, note 
the value of the smallest division of the main scale of the microscope and 
the number of divisions on the vernier scale. The difference between the 
value of one smallest division of the main scale and value of one division 
of vernier scale gives its least count. Once you have focused the tip of 
the pin and coincided it with the horizontal cross-wire, you are ready to 
perform your experiment.  

 

Fig. 3.7: Experimental arrangement for measuring depression of the beam using 
a microscope. 

5. Read the main scale and the vernier scale readings.  This is the reading 
when no load is placed in the hanger.  Record it in Observation Table 3.1.   

6. Next, without disturbing anything at all, place a weight of half-a-kilogram in 
the hanger. Is the tip of the pin visible in the field of view of the 
microscope? If so, does the tip of the pin coincide with the horizontal 
cross-wire? We expect that the tip will not coincide with the horizontal 
cross-wire because the beam has been depressed at the centre. You 
should observe that a gap appears between the tip of the pin and the 
horizontal cross-wire. Move the microscope vertically and make the tip of 
the pin to again coincide with the horizontal cross-wire of the microscope. 
Note the main scale and the vernier scale readings. Record these in 
Observation Table 3.1.  

Increase the load in equal steps of half-a-kilogram. Note the position of 
the pin by coinciding it with the horizontal cross-wire every time.  

7. Now remove the weights gently in the same steps and note the 
microscope readings again.  
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8. Repeat step 7 till there is no weight on the hanger. Note that the weight 
should be placed or removed from the hanger very gently. 

SAQ  2  –  Elastic limit

Why is it necessary to take reading with decreasing load as well? 

Observation Table 3.1: Measurement of depression using a microscope 

Value of 1 small division of the main scale of the microscope (x)  = …. cm 
No. of vernier scale divisions (n)      = …... 
Least count of the microscope (x/n)      = ….cm  

 
Sl. No. 

 
Load placed 

on the hanger 
W (g) 

Microscope reading when the tip of 
the pin coincides with the horizontal 

cross-wire 

 
Depression 

 (cm) 
with load 

increasing
 (cm) 

with load 
decreasing 

(cm) 
Mean  
(cm) 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

0 
500 

1,000 
1,500 
2,000 
2,500 
3,000 
3,500 

    
 

This will give you two readings for each load: one with load increasing and the 
other with load decreasing. Calculate the mean of these two readings for a given 
load. Calculate the depression produced in the beam for each load by subtracting 
the initial mean reading from the mean reading for that particular load. 

Plot a graph between the load (along x-axis) and depression (along y-axis).  
We expect the plot to be a straight line. Draw the best straight line passing as 
closely as possible through the observed points, as shown in Fig. 3.8.  
Calculate the slope of the straight line by choosing two widely separated 
points. The slope will give you the value of /W. 

 
Fig. 3.8: Graph between depression ( ) and load (W). 
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3.4   MEASUREMENT OF DEPRESSION IN A 
BEAM USING A TELESCOPE AND AN 
OPTICAL LEVER 

To measure depression in a beam using a telescope, you will require an 
optical lever and scale arrangement. (An optical lever consists of a plane 
mirror mounted on a tripod stand.) To set up the apparatus follow the steps 
below.  

1. Place the beam as in Step 1 of Sec. 3.3 of this experiment.   

2. Remove the vertical pin and replace it by an optical lever such that the two 
legs supporting the mirror M rest on the fixed horizontal base F behind the 
beam and the third leg L rests on the beam at its centre C, as shown in 
Fig. 3.9.  What will happen if you place the two legs supporting the mirror 
on the beam and the third leg on the base? If you do so, the depression 
will not correspond to the one at the centre. It is important to adjust the 
mirror so that it is vertical and parallel to the length of the beam. 

 

Fig. 3.9: Experimental arrangement for measuring depression of a beam using a 
telescope and an optical lever. 

When a load is placed on the hanger, depression is produced in the 
beam. As a result, the leg of the optical lever touching the centre of the 
beam would go down. This would tilt the mirror forward. So, to know the 
depression in this part of the experiment, you have to measure the angle 
through which the mirror tilts. This requires the use of a telescope and a 
scale arrangement. 

3. Fix a vertical scale in front of the mirror at a distance of about one metre 
on a rigid stand so that its image is visible in the mirror. Place the 
telescope close to the scale and at the same height as the mirror. Focus 
the eye piece so that the horizontal cross-wire of the telescope is distinctly 
visible. Now focus the telescope on the image of the scale in the mirror. 
For focusing this, you may have to turn the mirror slightly about its 
horizontal axis. If you are not able to focus the image of the scale clearly, 
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you should not waste time. Seek guidance of your counsellor and you 
should practice it a few times on your own thereafter. When you can 
clearly see the image of a scale in the mirror through the telescope, note 
the position of the horizontal cross-wire on the image of the scale and 
record it in Observation Table 3.2.  

What does the position of the horizontal cross-wire signify? Refer to  
Fig. 3.10. Here M1 is the initial position of the plane mirror. This means 
that what you have recorded is in fact division A of the scale.  

 

Fig. 3.10: Illustrating the principle of optical lever. 

4. Now gently place a load of 500 g on the hanger. This would depress the 
beam slightly. As a result of this, the mirror will tilt forward through an 
angle, say . Now, Instead of division A of the scale, you will see another 
division on the scale, say B (see Fig. 3.10) in the telescope after reflection 
from the plane mirror. Record its position in Observation Table 3.2. 

5. Increase the load on the hanger in equal steps of half kg.  Note down the 
position of the horizontal cross-wire of the telescope on the image of the 
scale after each addition of load.  

6. Now decrease the load on the hanger in the same steps and note the 
position of the horizontal cross-wire on the image of the scale in the mirror 
every time. Record it in Observation Table 3.2. For each load, calculate 
the mean values of the two readings – one taken while increasing the load 
and the other while decreasing the load – of the cross-wire thus obtained.  
Calculate d for each load by subtracting the initial mean reading (d0) from 
the mean reading for that particular load. 

7. If distance between the two divisions A and B on the scale is d and D is 
the distance between the mirror and scale, then 

 
D
d2  

If the third leg is at a perpendicular distance x from the hind legs P and Q, 
the depression, , of the beam for the given load is given by 

We know that when a 
beam of light is incident 
on a plane mirror, which 
is turned through an 
angle  about a vertical 
axis in its plane, the 
reflected ray turns 
through twice the angle.
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 = x   
D
dx

2
         (3.11) 

From this relation we find that once x, d and D are known,  can be 
readily computed.   

8. Measure the distance D between the mirror and the scale and write it in 
Observation Table 3.2. To measure x, you should place the optical lever 
on a sheet of paper and press it lightly so that impressions of its feet are 
obtained on it. From these impressions, determine the perpendicular 
distance of the front foot of the optical lever from the line joining the hind 
legs. Using Eq. (3.11) you can readily know the depression ( ) of the 
beam for each load and record it in Observation Table 3.2.   

Observation Table 3.2: Measurement of depression using a telescope 
and an optical lever 

Distance D of the scale from the mirror of optical lever =........................….. cm 

Perpendicular distance x of the front foot of the optical    
lever from the line joining the other two legs      =………............….. cm 

Sl. 
No. 

Load (W) 
placed on 
the hanger 

(g) 

Position of the horizontal  cross-wire 
of the telescope on the image of the 

scale (cm) 

= 0 

(cm) 
xd  

(cm) 
with 

increasing 
load 

with 
decreasing 

load 

Mean 
(s) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

0 

500 

1,000 

1,500 

2,000 

2,500 

3,000 

3,500 

  d0 =…   

Plot a graph between load (W) along the x-axis and depression ( ) along the 
y-axis. You should preferably use the same scale as you have used in case of 
W  graph for a microscope. Calculate the slope of the straight line thus 
obtained. We expect it to be same as that obtained in Sec. 3.3. 
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3.5   COMPARISON OF ACCURACIES 
Now, you have to calculate Young’s modulus in both cases. To do so, you 
should measure the thickness and width of the beam and its length between 
the knife edges. To measure the length of the beam between the knife edges, 
you can use a metre scale. Using different parts of the scale, repeat the 
measurement several times and get the mean value.  Record your readings in 
Observation Table 3.3(a). 

Observation Table 3.3(a): Length (L) of the beam between knife-edges  
A and B. 

Sl. 
No. 

Scale reading for the 
knife-edge A 
x1 (cm) 

Scale reading for the 
knife-edge B 
x2 (cm) 

Length 
(x2 1) cm 

1. 
2. 
3. 
4. 
. 
. 

   

Mean length L (cm) = …………… + ……. 

Use a screw gauge to measure the thickness of the beam at several places 
along its length. Make your own Observation Table 3.3(b) similar to the 
Observation Table 1.2 described in Experiment 1 and calculate the mean 
thickness.  

Observation Table 3.3(b):  Measurement of thickness (d) of the beam 
using screw gauge 

Least count of the screw gauge =……...cm 
Zero error (if any) with proper sign   =……...cm 

    
 
 

   

Mean thickness    = …………cm 
Corrected value (if zero correction is made) = …………cm 

Take at least four readings to measure the width of the beam with vernier 
callipers at several places. Record the readings in Observation Table 3.3(c) 
prepared by you based on Observation Table 1.1 in Experiment 1.  Calculate 
the mean value. 

Observation Table 3.3(c):  Measurement of width (b) of the beam using 
vernier callipers 

Least count of the vernier callipers  = ……..cm 
Zero error (if any) with proper sign    =……...cm 
    
 
 

   

Mean width     = ……….cm + ……………… cm 
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SAQ 3  –   Measurement of small lengths 
Suppose that a good screw gauge or vernier callipers is not available in your 
lab to measure d and b.  Which device  a metre scale, a microscope or the 
telescope will you use or recommend? Justify your answer. 

Knowing L, b, d and the slopes of the straight lines obtained using a 
microscope and a telescope, you can easily calculate Young’s modulus of the 
material of the beam using Eq. (3.10): 

 
slope

1

4 3

3

bd

LY =………….. dynes cm 2  

                =………….. N m 2 

Result: Young’s modulus of the material of the given beam using microscope              

              =……..N m 2 

Result: Young’s modulus of the material of the given beam using telescope 
and optical lever =……. N m 2 

Which of these results is closer to the standard value? Theoretically, the 
accuracy to which the depression is measured using a microscope is equal to 
the least count (L.C.) of the microscope. Suppose that L.C. of microscope is 
0.001 cm. 

In the case of optical lever arrangement, the least count of vertical scale is  
0.1 cm. This is multiplied by the factor x/2D (see Observation Table 3.2).   

If D = 1m = 100 cm and x = 3 cm, then 015.0
200
3

2D
x . So the least count 

of measurement of depression by the optical lever arrangement  
= 0.1  0.015 = 0.0015 cm. 

This shows that measurement of depression with microscope (and hence 
value of Y) is more accurate than with an optical lever arrangement.  But the 
optical lever method can be made to give better results than microscope 
method.  For this you have to think of a way to improve the least count for the 
measurement of depression by optical lever arrangement. You may, for 
instance, use a half-millimetre scale instead of mm scale. The least count of 
the measurement of depression with the optical lever arrangement depends on 
(i) the length of tilting arm of the optical lever, x, and (ii) the distance between 
the mirror and the scale D. It may not be possible to adjust x unless you can 
use another optical lever. However, if we use a high power telescope so that D 
can be as large as possible, say 3 m, the optical-lever method can yield more 
accurate results.  

 



   

65 

Experiment 4       Determination of the Modulus of Rigidity of a Wire using Maxwell’s Needle 

     

DETERMINATION OF 
THE MODULUS OF RIGIDITY 

OF A WIRE USING 
MAXWELL’S NEEDLE 

Structure 

4.1 Introduction 
Expected Skills 

4.2 Familiarization with Maxwell’s  
Needle Apparatus 

  

 4.1   INTRODUCTION 
In the previous experiment, you have learnt how to determine Young’s modulus of steel 
using the method of bending of beams. The depression produced in the beam loaded with 
weights at the centre could be measured either using a travelling microscope or an optical 
lever arrangement. You may recall that this information is vital in the construction of buildings 
as well as bridges. In this experiment you will determine the modulus of rigidity of a wire 
using Maxwell’s needle apparatus. When you visit the physics laboratory at your study 
centre, look out for equipment wherein modulus of rigidity plays some role in the 
determination of a physical quantity. In particular, look out for torsional pendulum, which  
is used to determine modulus of rigidity of a wire and Searle’s apparatus to determine  
elastic constants. You can also look for ballistic galvanometer, which is used to study weakly 
damped motion 

Expected Skills 
After performing this experiment, you should be able to: 

 set up Maxwell’s needle apparatus; 

 configure it for different mass distributions; 

 measure the diameter of wire with a screw gauge; 

 use physical balance for measuring mass; and 

 take time period readings for harmonic oscillations. 

4.3 Theory of Modulus of Rigidity 

4.4 Experiment with Maxwell’s 
Needle Apparatus 

 

EXPERIMENT 4
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The apparatus required to measure modulus of rigidity using Maxwell’s needle 
is listed below. 

 

 

 

 

4.2   FAMILIARIZATION WITH MAXWELL’S 
NEEDLE APPARATUS 

In this experiment Maxwell’s needle is used to determine the modulus of 
rigidity of a wire. It essentially uses dynamical method where time periods of 
the needle are measured under different configurations. 

Refer to Fig. 4.1. You will note that Maxwell’s needle consists of a hollow 
brass tube of length L. It is suspended horizontally by a wire fixed to its centre. 
The other end of the wire is clamped to a rigid support. The tube carries four 
cylinders of identical length (= L/4). Two cylinders (H, H) are hollow of mass 
m1, say. Other two cylinders are solid (S, S) and their mass   
m2 > m1. A plane mirror M is fixed at the middle of the needle on its top. 
Usually a knitting needle is placed vertically and its image can be seen in the 
mirror through a telescope mounted at adequate height/position. You will be 
required to use a stop watch to note down the time taken by the Maxwell’s 
needle to complete certain number of oscillations and a screw gauge to 
measure the radius of the wire. 

 
(a)                                  (b) 

Fig. 4.1: Maxwell’s needle apparatus

Before going to the procedure of measurements, let us briefly discuss the 
theory behind this experiment. 

  
4.3   THEORY OF MODULUS OF RIGIDITY 

We know that all bodies are deformed when a force is applied on them.  
Depending on the direction of application of force, we define different elastic 
constants. For instance, when the magnitude of applied force is within the  

Apparatus required 

Maxwell’s needle, a thin long wire whose modulus of rigidity is to be 
determined, metre scale, stop watch, physical balance, weight box, 
screw gauge, knitting needle fitted vertically on a stand, telescope.  

You may recall from your 
+2 physics that 

Strain

Stress
Elasticity

 

Stress is defined as 
restoring force developed 
within the body per unit 
area and strain is 
fractional change in 
length, volume or shape 
of a body. The 
corresponding strains are 
characterized by Young’s 
modulus, bulk modulus 
and modulus of rigidity.

 

H S S H 

M 

L 

M 

L 

H S S H 
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elastic limit, all bodies regain their original state on removal of deforming force  
due to the restoring force that develops in the body. Young’s modulus, Y, 
characterises the effect of applied force in the form of change in length. It is 
defined as the ratio of stress to longitudinal strain. 

When the applied force produces a change in the shape of a body, leaving its 
volume constant, the strain is characterised by the angle of shear. Then the  
ratio of stress to shearing strain defines the modulus of rigidity or shear 
modulus. We will use Maxwell’s needle to measure the modulus of rigidity of  
a wire. For this purpose, we use it in different configurations by changing the 
position of its cylinders, thereby changing the mass distribution on needle. 

The solid cylinders are placed in the inner positions and the hollow cylinders  
in the outer positions in the tube as shown in Fig. 4.1a. When the wire is  
twisted, the system begins to execute torsional oscillations about the wire as 
the axis of oscillation. The motion of the Maxwell’s needle will be simple 
harmonic and the time period of oscillation is given by 

 CT /2 11  (4.1) 

where 1 is moment of inertia of the suspended system and C is restoring 
couple per unit twist of the wire due to torsional reaction. 

Next, the arrangement of solid and hollow cylinders is interchanged so that 
solid cylinders are on the outside and the hollow cylinders are in the interior 
(Fig. 4.1b). If the needle is made to oscillate again with changed configuration, 
we expect the time period to be different from the earlier one. Do you know 
that the moment of inertia will be different from the earlier case as mass 
distribution about the axis of rotation has changed? If we denote the moment 
of inertia in this case by 2 and make Maxwell’s needle to oscillate as before, 
the new time period will be given by 

 CT /2 22  (4.2) 

On squaring Eqs. (4.1) and (4.2) and combining the resulting expressions, we 
can write 

 )(4
12

2
2

1
2
2 C

TT  

  2
1

2
2

12
2 )(4

TT
C  (4.3) 

We can relate the restoring couple per unit twist with modulus of rigidity. To do 
so, we think of what happens when the wire is twisted in a plane perpendicular 
to its length. Due to elasticity, an equal and opposite torque develops in the 
wire. In the equilibrium position, the twisting couple is equal and opposite to 
the restoring couple. The restoring torque per unit radian is given by 

  
2

4nrC  (4.4) 
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where n is the modulus of rigidity, r is the radius of the wire and is its length. 

On combining Eqs. (4.3) and (4.4), we can write 

  42
1

2
2

12
)(

)(8
rTT

n  (4.5) 

From this result, you will note that to determine n, we must know 1 and 2. 
Normally, it is not easy to determine the moment of inertia of a body accurately 
and any error gets magnified because of the difference )( 12 . However, in 
this method, we can counter this difficulty by expressing the difference 

)( 12  in terms of the difference of masses of the cylinders )( 12 mm  and 
the length of the Maxwell needle tube. To understand this, note that the 
centres of mass of the inner and outer cylinders lie at distance L/8 and 3L/8, 
respectively, from the axis of oscillation. Therefore, the essential change from 
the first configuration, where solid cylinders occupy the inner positions, to the 
second configuration, when they occupy the outer positions, consists of 
transferring mass )( 12 mm  from a distance L/8 to a distance 3L/8 from the 
axis of oscillation on either side of it. Due to this, the moment of inertia of the 
loaded tube changes. Using the principle of parallel axis (read the margin 
remark) in the instant case, we can write 

  .
88

3)(2
22

1212
LLmm  (4.6) 

Note that we have multiplied the mass by a factor of 2 to account for the 
change taking place on both sides of the axis of rotation. 

On simplification, we can rewrite Eq. (4.6) as 

  
6464

9)(2
22

1212
LLmm  

             
4

)(
2

12
Lmm  (4.7) 

On combining Eqs. (4.5) and (4.7), we get 

  42
1

2
2

2
12

)(
)(2

rTT
Lmmn  (4.8) 

Eq. (4.8) expresses modulus of rigidity in terms of . and ,,,,, 2121 rTTLmm  
These physical quantities can be determined accurately and therefore 
Maxwell’s needle provides us a fairly precise method for determination of 
modulus of rigidity. Note that  

1. The physical quantities occur with different powers. For instance, radius of 
the wire occurs in the fourth power and a small error in its determination 
will affect the result significantly. Therefore, you must determine its value 
very carefully and we recommend the use of a screw gauge for this 
purpose. 

Principle of parallel 
axes states that the 
moment of inertia of a 
body about any axis is 
equal to its moment of 
inertia about a parallel 
axis through its centre of 
mass plus the product of 
the mass of the body and 
the square of the 
distance between the two 
axes. You may have 
studied this principle in 
your Class 12. 
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2. In the formula of modulus of rigidity, difference of the squares of time 
periods occurs in the denominator. Since it will be very small, it is 
important to obtain values of T1 and T2 by noting time for 20 oscillations. 

4.4   EXPERIMENT WITH MAXWELL’S NEEDLE 
 APPARATUS 
To measure the modulus of rigidity using Maxwell’s needle, you should 
perform the following steps: 

1. Take a long kink-free wire (about 1 m) of the material whose modulus of 
rigidity is to be determined. (If there is any kink, it must be removed before 
you begin your experiment. A simple method could be to hold the wire in 
the folds of a handkerchief and pull it along the length. If you succeed, fine. 
Otherwise, request your Counsellor to get it changed.)  

2. Suspend the wire from a rigid support and fasten the mid point of hollow 
tube of Maxwell’s needle to its other end. You must ensure that the needle 
is horizontal and the mirror faces you. 

3. Place a knitting needle in front of the mirror so that its tip is in the middle of 
the mirror. (It will act as an indicator while counting the number of 
oscillations.) Now focus a telescope from a distance of about 1.5 m on the 
image of the tip of the needle formed in the mirror and remove parallax, if 
any. 

4. Using the weighing balance measure the masses of two hollow and two 
solid cylinders separately. Note the masses of hollow cylinders under m1 
and that of solid cylinders under m2 in Observation Table 4.1. Calculate 
average masses of m1 and m2. 

5. Put the solid cylinders SS in the middle and the hollow cylinders HH on the 
outer side. You must ensure that  

i) the Maxwell’s needle is horizontal, and  

ii) no part of the cylinders projects outside the tube. 

(If the needle is not horizontal, up and down motion of the needle will 
lead to erroneous results.) 

6. Push one end of Maxwell’s needle slightly backward in a horizontal plane 
and let it go. The needle will begin to execute torsional oscillations. 

7. When the motion becomes steady, i.e. there is neither up and down nor 
lateral motion, determine the time for 20 oscillations (t1). To do so, you 
should start the stop watch when the image of the needle crosses towards 
left or right vertical cross-wire of the telescope and count the time taken for 
20 oscillations. (You must have learnt to use a stop watch in your +2 
classes.) Record your reading in the Observation Table 4.1A. You should 
switch off the fan while taking readings. 

8. Repeat steps 6 and 7 at least five times. 
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9. Next repeat steps 6 to 8 above by interchanging the position of hollow and 
solid cylinders and noting the readings for 20 oscillations under t2. 

10. Measure the length of Maxwell’s tube (L) as well as the length of the wire 
( ) and record these in Observation Table 4.1. 

11. Since the fourth power of the radius of the wire occurs in the formula of 
rigidity modulus and its value is very small, you must measure its diameter 
very accurately. Take readings for at least five different positions along the 
length of the wire using a screw gauge. For greater accuracy, measure the 
diameter at each position in two mutually perpendicular directions, AB and 
CD as shown in Fig. 4.2. This will help you to minimise the effect of non-
uniformity in the cross-section of the wire. 

12. Calculate the modulus of rigidity using Eq. (4.8). 

Observation Table 4.1 

Length of the wire,  = ……………………… cm 

Length of Maxwell’s tube, L = ……………………… cm 

Average mass of hollow cylinders,    m1 g........
2

..........
  

Average mass of solid cylinders,       m2 g........
2

..........
  

A. Determination of Time Periods 
 No. of oscillations, n = 20 

 Least count of stop watch = …….. s 

Sl.No. Time t1 for n 
oscillations 

(s) 

Time t2 for n 
oscillations 

(s) 

1
1(s)t T

n
 2

2(s)t T
n

 

1.     

2.     

3.     

4.     

5.     

Average value of T1 = ………… s

Average value of T2 = ………… s

B 

C 

D 

A 

Fig. 4.2: Cross section  
of a wire 
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B. Determination of Radius of Wire 

 Least count of screw gauge = ………….. cm 

Sl.No. Diameter (cm) Radius (cm) 

Along AB Along CD Along AB Along AB 

1.     

2.     

3.     

4.     

5.     

Average radius along AB, r1 = …………….. cm 

Average radius along CD, r2 = …………….. cm 

Mean value cm
2

21 rrr  

Calculations: 

Modulus of rigidity of wire (from Eq. 4.8) 

  42
1

2
2

2
12

)(
)(2

rTT
Lmmn  

Result: The modulus of rigidity of wire = ………….  1011 dyne cm 2. 
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DETERMINATION OF 
ELASTIC CONSTANTS 

OF A WIRE BY 
SEARLE’S METHOD 

Structure 

5.1 Introduction 
Expected Skills 

5.2 Familiarisation with Searle’s 
Apparatus 

  
5.1   INTRODUCTION 
In earlier experiments, you have learnt how to determine Young’s 
modulus (Y) and modulus of rigidity (n) of a material using the 
method of bending of beams and Maxwell’s needle, respectively. 
There are two other elastic constants: Bulk modulus (K) and 
Poisson ratio ( ). You may now ask: Can we determine all these 
elastic constants in one experiment? The answer to this question is 
yes, we can. In a physics laboratory, Searle’s apparatus is used to 
determine Y, n,  and K. In this experiment you will learn to use it  
for obtaining various elastic constants. 

Expected Skills 
After performing this experiment, you should be able to: 

 list the constituents of Searle’s apparatus; 

 assemble Searle’s apparatus; 
 set up  the constraint system and bring it in oscillation 

mode and obtain the value of Young’s modulus; 
 set up the apparatus to take measurements for determining modulus of rigidity;  
 determine Poisson ratio from the values of Young’s modulus and modulus of rigidity; 

and 

 calculate the bulk modulus from obtained values of Young’s modulus and Poisson 
ratio.  

5.3 Theory of Elastic Constants 

5.4 Measurements with Searle’s 
Apparatus 

5.5 Calculations 

Within elastic limits, bulk 
modulus is defined as 
the ratio of stress to 
volume strain: 

)/(

/

Strain Vol.

Stress

VV

AF
K

Poisson ratio is defined 
as the ratio of lateral 
strain to linear or 
tangential strain. It is 
denoted by the symbol . 
Its value lies between 0.2 
and 0.4 and it has no 
units.

EXPERIMENT 5
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We now list the apparatus required to perform this experiment. 

 

 

 

 

 

5.2   FAMILIARIZATION WITH SEARLE’S 
APPARATUS 

Refer to Fig. 5.1a. It shows two identical rods AB and CD joined at their 
centres by a wire FH (of length L). We have to determine elastic constants of 
the material of this wire. This system is suspended horizontally from a rigid 
support by two parallel torsionless vertical inextensible threads, EF and 
GH , preferably of silk, so that when the wire is straight and the system is in 
equilibrium position, the rods will be parallel to one-another in the plane 
ABDC. The threads are attached to small needle holes at F and H at the 
middle of the rods. The rods are turned through a small equal angle ( ) in 
opposite directions in a horizontal plane. For this, ends A and C are drawn 
towards each other, as shown in Fig. 5.1b.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.1: Searle’s apparatus for determination of elastic constants: 
               a) equilibrium position; and b) instantaneous constrained 

configuration. 

In this constrained condition, the wire FH bends into a circular arc. As A and 
C are released, the rods begin to execute torsional oscillations. By taking the 
reading of time period of these oscillations, we can arrive at the elastic 
constants of the wire. Now we will discuss briefly the theory governing these 
measurements. 

Apparatus required 

Two identical rods (bars) of circular (or square) cross-section with 
arrangement to hang, a thin wire of about 30 cm length, a stop watch, a 
screw gauge, a vernier callipers, inextensible thread, metre scale, weight 
box and a physical balance.  

(a) (b) 
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5.3   THEORY OF ELASTIC CONSTANTS  
When we set the rods in torsional oscillations, the middle points of bars 
remain essentially at rest. However, if the amplitude of oscillations is small, 
the arc will almost resemble a straight line. This means that the distance 
between the lower ends F and H of the supporting threads remains 
practically constant implying that the threads in Fig. 5.1b remain vertical 
during the oscillations of the rods/bars. This suggests that under small 
oscillation approximation, no horizontal components of tensions in the 
threads act on the wire.  

Note that the mass of the wire is negligible compared with that of the rods 
and the mid-points of the rods remain at rest, i.e., there is no horizontal or 
vertical motion. Therefore, the action of the wire on either rod manifests as a 
couple. The moment of this couple is the same at every point of the wire and 
it bends into a circular arc. 

If the radius of the arc is R and the angle of deflection of each rod from its 
respective equilibrium position is , we can write 

 2RL  (5.1a) 

where L is length of the wire and 2  denotes the angle subtended by the wire 
at the centre of curvature of the circular arc into which it bends. 

By rearranging Eq. (5.1a), we can write 

 
2
LR  (5.1b) 

In the experiment of bending of beam (Sec. 3.2.2), we have already obtained 
the expression for the bending moment of a beam (Eq. 3.6). Applying the 
same arguments, the bending moment of the wire and the couple exerted by 
it on each rod is given by: 

 
L
rY

R
rY

R
Y

G g
24

44
 (5.2) 

where Y is Young’s modulus for the material of the wire and )4/( 4rg  is 

the geometrical moment of inertia of the area of cross-section of the wire 
about an axis passing through the centre of the area and normal to the plane 
of bending. 

This couple produces an angular acceleration 2

2

dt
d  in each rod directed 

towards its equilibrium position. Hence, we can write 

 
L
rY

dt
d

2

4

2

2
 (5.3) 

where  is the moment of inertia of each rod about an axis passing through 
its centre of gravity (C.G.) and perpendicular to its length, , i.e., about the 
thread from which it is suspended. We can rewrite Eq. (5.3) as 
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L
rY

dt
d

2

4

2

2
 (5.4) 

Do you recognise this equation? It represents S.H.M and can be written as  

02
2

2

dt
d  where .

2

4
2

L
rY  

The period of harmonic oscillation of each rod is given by 

 41
222

rY
LT  

  42
1

8
rT
LY  (5.5) 

If the rods have square or rectangular cross-section with length  and 

breadth b, we can write 

  
12

22 bM  (5.6a) 

where M is mass of the rod.  

If the cross-section of the rods is circular with radius cR , we can write 

  
412

22
cR

M  (5.6b) 

Note that Eq. (5.5) provides us a method of determining Young’s modulus 
Y of the material of the wire FH. You may now ask: How can we determine 
other elastic constants using this apparatus? To obtain the modulus of 
rigidity, remove the rods from their suspensions and fix one of these 
horizontally to a rigid support, as shown in Fig. 5.2. The wire is hung 
vertically with the other rod suspended horizontally at its lower end.  

 

 

 

 

 

 

 

 

Fig. 5.2: Arrangement of Searle’s apparatus for obtaining modulus of rigidity. 

A B 

F 

H D C 



 

76

BPHCL-132                                                            Mechanics: Laboratory  

Now suppose the wire is twisted through a small angle by moving the rod CD 
in a plane perpendicular to its length in anticlockwise direction. The rod will 
begin to execute oscillations in the horizontal plane on being released. Do 
you recognise this system and say how it will act? This arrangement works 
like a torsional pendulum. 

For SHM, the time period of oscillation is given by 

 
C

T 22  (5.7) 

where  is moment of inertia of rod CD about the axis of rotation passing 

through its centre and 
L

nrC
2

4
is the restoring torque per unit radian in the 

wire of radius r, length L and modulus of rigidity n. As explained in 
Experiment 4, the restoring torque develops in the wire due to elasticity. On 
squaring the expression given in Eq. (5.7), we can write 

 2
2

24 4
2 TL
nrC  

so that  42
2

8
rT

Ln  (5.8) 

On combining Eqs. (5.5) and (5.8), we get 

 2
1

2
2

T
T

n
Y  (5.9) 

The ratio 
n
Y is known to be connected to Poisson ratio, , through the 

relation 

 )1(2
n
Y  (5.10) 

so that 1
2n
Y  1

2 2
1

2
2
T

T  (5.11) 

Also the bulk modulus, K and Young’s modulus, Y are related to Poisson 
ratio as 

 21
3K
Y  (5.12) 

so that  
)21(3

1 YK  (5.13) 

It is important to note that Y, n and  can be determined using Searle’s 
apparatus by simply observing the time periods of oscillation in two different 
configurations. And the bulk modulus can be obtained from the measured 
values of Y and . To that extent, this method is rather straightforward.  
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5.4   MEASUREMENTS WITH SEARLE’S 
APPARATUS 

1. Set up the apparatus as shown in Fig. 5.1a so that the rods AB and CD 
lie in the same horizontal plane. For this, you can take two inextensible 
cotton or silk threads of about 60 cm length. 

2. Set up a pointer close to the centre of one of the rods and make a mark 
on the rod in line with the pointer when the Searle’s apparatus is in 
equilibrium position and the rods are at rest. 

3. Pass a cotton loop around the ends A and C. This will help you to draw 
these ends towards each other through a small angle. Make sure that the 
constrained system is at rest. 

4. Burn the cotton loop. The ends A and C will become free and the rods 
will begin to oscillate. Make sure that the amplitudes of oscillations of 
these rods are small, about 3 . Note the least count of the stop watch 
and use it to observe time (t) for say 20 oscillations and record it in 
Observation Table 5.1. 

5. Repeat Steps (3) and (4) outlined above at least five times. From these 

you can calculate the mean value of time period .
205

54321
1

tttttT  

6. Remove the (cotton or silk) threads supporting the rods in the suspension 
configuration and clamp one of the rods, say AB, horizontally with a rigid 
support, as shown in Fig. 5.2. You must make sure that the wire is 
vertical. 

7. Twist the wire by rotating one end of the rod CD in a horizontal plane 
through a small angle and then release it. The rod will execute torsional 
oscillations. Before you start noting time )(t for say, 20 oscillations, you 
must make sure that the rod does not wobble. 

8. Repeat Step 7 at least five times and record your readings in 
Observation Table 5.1. 

9. Measure the diameter of the wire at a minimum of five different places 
along the length of the wire in two mutually perpendicular directions XX  
and YY  using a screw gauge. This will help in minimising the effect of 
inhomogeneity in wire thickness. Record your readings in Observation 
Table 5.2.Note that a small error in the radius will significantly influence 
the values of elastic constants since its fourth power occurs in their 
expressions. Moreover, its magnitude is small; therefore, you must 
determine r very carefully.  

Measure the length of the wire under study (L) using a metre rod and 
note it under Observation Table 5.2. 

10. Determine mass M and length  of the rod CD accurately and record 

these at the top of the Observation Table 5.3. To measure the radius Rc 
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of rod CD, you can use vernier callipers. Take at least five readings at 
different places and record these in Observation Table 5.3. 

Observation Table 5.1:  Measurement of time periods 1 and 2 

 No. of oscillations  = 20 
 Least count of stop watch = …….. s 

Sl.No.   

1.   

2.   

3.  

4.   

5.   

            1 ...........s
100

tT         2 .........s
100

tT  

Observation Table 5.2: Measurement of radius of wire 

 Least count of screw gauge = ………….. cm 

Sl.No. Diameter (cm) Mean diameter (cm) 

=

2

XX +YY

d  Along  Along  

1.   d1 

2.   d2 

3.   d3 

4.   d4 

5.   d5 

Mean diameter of wire = d = …………….. cm 

Mean radius of wire = 
2
dr = …………….. cm 

Length of wire = L = …………….. cm 
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              Observation Table 5.3: Measurement of radius of rod 

Mass of rod CD = M = …………….. g 
Length of the rod CD,  = …………….. cm 

Least count of vernier callipers = ……………. cm 

Sl.No. Diameter (cm) Mean diameter (cm) 
 Along  Along  

1.   D1 

2.   D2 

3.   D3 

4.   D4 

5.   D5 

Mean diameter of the rod CD = D = …………….. cm 

Mean radius of rod CD = Rc = 
2
D …..……………cm 

5.5   CALCULATIONS 

Use the following formulae for calculating the values of various elastic 
constants: 

i) 
22

2
4 2

1

8  dyne cm
12 4

cRLY M
r T

 

ii) 
22

2
4 2

2

8  dyne cm
12 4

cRLn M
r T

 

iii) 1
2n
Y

iv) .cm dyne 
)21(3

2YK

Result: The values of elastic constants determined using Searle’s apparatus 
are as follows: 

  2cm dyne ..................Y  

  2cm dyne ..................n

  ..................  

  2cm dyne ..................K

On knowing these values you can determine the material of the wire. For this 
you should look at standard values given in a laboratory manual or consult 
your Counsellor. 

In case, the rod has 
rectangular cross 
section, you will measure 
its breadth using vernier 
callipers and use  
Eq. (5.6a) to calculate . 
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DETERMINATION OF 

ACCELERATION DUE TO 
GRAVITY USING BAR 

PENDULUM 

Structure 

6.1 Introduction 
Expected Skills 

6.2 Theory of Compound Pendulum 
 
 
 

 

6.1   INTRODUCTION 

In Experiment 5, you have learnt how to determine the elastic constants 
(Young’s modulus, Modulus of rigidity, Bulk modulus and Poisson ratio) 
using Searle’s apparatus. All these elastic constants were determined in one 
experiment. Now, in this experiment, you will work with oscillating systems. 

In your school, you must have worked with a simple pendulum. You know 
that a simple pendulum is a heavy (point) mass suspended from a rigid 
support by a weightless, inextensible string.  In practice, a simple pendulum 
is made up of heavy metallic bob suspended from a rigid support by means 
of an ordinary string. (So you must appreciate that what we have in practice 
is not an ideal simple pendulum!) It can freely oscillate to and fro about the 
point of suspension in a plane. A pendulum, as you know, happens to be the 
main equipment inside a wall clock. The maximum displacement of the bob 
on either side of its equilibrium position is called the amplitude of oscillation. 
The time taken by the pendulum to complete one oscillation is called time 
period.  

You may think that a simple pendulum is an ideal arrangement for time 
measurement. But it is not so; a practical simple pendulum has some 
inherent drawbacks, which we discuss in Sec. 6.2. Use of a compound 

6.3 Procedure for Determining 
Gravitational Acceleration 

 Bar Pendulum 
 Measuring Oscillations 
 Setting up and Measurements with Bar 

Pendulum 
 Determination of the Radius of Gyration 

You might recall that in 
your school physics 
course you studied only 
the dependence of 
period on the length of 
simple pendulum.  

EXPERIMENT 6
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pendulum eliminates some of these drawbacks. In this experiment, we shall 
restrict ourselves to the oscillatory motion of a bar pendulum. Using the bar 
pendulum, you will measure acceleration due to gravity  as described in Sec. 
6.3. In the next experiment, you will determine acceleration due to gravity 
using a Kater’s pendulum which has inhomogeneous mass distribution. 

Expected Skills
After performing this experiment, you should be able to: 

 establish the relation between the time period and the length of a bar 
pendulum; 

 discover the dependence of the period on the length of a bar 
pendulum; 

 compute the value of acceleration due to gravity using a bar pendulum; 
and 

 compute the radius of gyration of a bar pendulum. 

The apparatus you will require for this experiment is listed below. 
 

6.2   THEORY OF COMPOUND PENDULUM 

We know that a simple pendulum suffers from the drawback that some air is 
always dragged by the bob. Similarly, the string may not be perfectly 
inextensible leading to non-planar oscillations and motion about the point of 
suspension may have rotational component, etc. These sources of error 
sometimes lead to variation in the value of T. Can you suggest a way to 
overcome these problems? The remedy lies in the use of a compound 
pendulum.   

Consider a compound pendulum of mass m suspended from point S. 
Suppose it is given a small angular displacement  as shown in Fig. 6.1. 
Now the centre of gravity (CG) G, is shifted to point G  with gravitational 
force mg acting in downward direction. 

When the distance SG = SG  = L, the torque experienced is 

 mg AGmg AG  

          sinmgL sinmgL

For small angle , we can approximate sin    and hence  

 mgLmgL            (i) 

S 

G 

L 

G’ 

L 

mg 

A 

Fig. 6.1: Compound 
pendulum in motion.

Apparatus required 

Bar pendulum, stop watch, metre scale. 
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If the angular acceleration due to torque is  and the moment of inertia of the 
rigid body about S is , we can write 

 

2

2
d
dt2
d
dt
d
d   

(ii) 

Hence we have, 

 
mgL

dt

d
2

2
 

or 

      mgL

dt

d
2

2
   (iii)  

This equation represents a simple harmonic motion, and can be expressed 
in terms of oscillation frequency 0 as given by  

 02
02

2

dt

d  (6.1) 

where mgL2
0  

Now the period of oscillation T is related to 0 by the relation 

 
mgL

T 22

0
 (6.2) 

To obtain T, we should express the moment of inertia  in terms of 
measurable quantities. You know that the moment of inertia of a body about 
a given axis ( ) and its moment of inertia about the axis passing through its 
 CG ( g) are related by the following relation: 

 )( 222 LkmmL rg  (6.3) 

where L is the distance between the two axes, 2
rg mk  and rk  is the radius 

of gyration of the body about an axis passing through G. 

Substituting for from Eq. (6.3) in Eq. (6.2) we get 

 
gL

Lk
mgL

LkmT rr
2222

2)(2   

     
g

L
L

kr
2

2
 

(6.4) 

The radius of gyration is 
the radial distance 
between the axis and 
the point at which the 
whole mass of the body 
could be placed without 
any change in the 
moment of inertia of the 
body about that axis. 
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Substituting LL
L
kr

2
, we get 

 
g
LT 2  (6.5) 

You will recall that this is the expression for the period of oscillations of a 
simple pendulum. Length L  is termed as the equivalent length of a 
simple pendulum for the given compound pendulum. This means that the 

time period of a simple pendulum of length L
L
kL r

2

  is the same as that 

of the compound pendulum with radius of gyration kr  and with distance L 
between the point of suspension and the centre of gravity. 

When the distance between the point of suspension S and centre of gravity 

G is L, a point P exists on the other side of G at the distance ,
2

L
kr which 

corresponds to same time period of oscillation. It is the centre of 
oscillation. The distance between S and P is 

 )(
2

L
L

k
L r

Hence the centre of oscillation lies at the equivalent length of the simple 
pendulum (L ) from the point of suspension. Since the period of oscillation is 
same for both these points, we can use them interchangeably. 

Therefore, when the compound pendulum is made to oscillate about a 
horizontal axis, its motion is simple harmonic and the time period is given by 

 
g
LkT

L
r

22
2  (6.6) 

where L is the distance between the point of suspension and CG and kr is 
the radius of gyration of the body.   

Eq. (6.6) is a general equation for the time period of a compound pendulum. 
Now we define 

 L
L

kL r
2

 

and call it the length of an equivalent simple pendulum. The time period is 
given by 

 
g
LT 2  (6.7) 
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In this part of the experiment, you are required to investigate how the period 
of oscillation of a bar pendulum varies with distance between its point of 
suspension and CG.  

6.3    PROCEDURE FOR DETERMINING 
GRAVITATIONAL ACCELERATION 

 

6.3.1    Bar Pendulum 

A bar pendulum is a rigid body capable of oscillating freely about a horizontal 
axis. In the physics laboratory, it is normally available in the form of a bar of 
length nearly one metre and width about 2.5 cm.  A series of circular holes, 
5-6 mm in radius, are drilled symmetrically about its centre of gravity (CG), 
i.e. along the length of the bar as shown in Fig. 6.2a.) The centres of any two 
consecutive holes are at equal distances of about 5 cm. These holes allow 
the bar to be suspended from a knife-edge. Usually, two movable knife-
edges are provided with the bar pendulum. These can be fitted successively 
in various holes, one on each side of CG and at equal distances from it. You 
may now realise how deficiencies in a simple pendulum are taken care of in 
a compound bar pendulum.   
 
 
Make a reference mark using a pointer at the equilibrium position of the bar 
pendulum as well as at the maximum displacement of oscillation. You should 
keep the amplitude constant in each observation and it should be such that 
at no time, the small angle approximation is violated (   10 ).  That is, the 
motion should be simple harmonic. This may be ensured by using a 
protractor. (If a protractor is not available in the laboratory, you can make 
angle markings on a separate sheet of paper. Place the graduated scale 
behind the pendulum in such a way that the zero angle line coincides with 
the equilibrium position of the pendulum. Moreover, the origin of angular 
scale should be aligned with the point of suspension, as shown in Fig. 6.2b)  
 

 
One complete oscillation                           One complete oscillation                 

                C A  B  A C                                     A  B  A  C  A 

Fig. 6.3: Two different ways of counting the number of oscillations 

If you are working with 
another student, one of 
you can count while the 
other keeps time.  The 
‘counter’ should begin 
countdown two, one, “go”, 
one, two… and so on.  
This gives the timekeeper 
a warning about the ‘Go” 
signal.  The end of 
counting may be indicated 
by saying ‘stop’.  Make 
sure that each one of you 
takes at least one 
complete observation 
individually. 

 
(b) 

Fig. 6.2: a) A bar 
pendulum; b) pendulum 
with angles graduated 
sheet. 

6.3.2    Measuring Oscillations 

(a) 
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To begin with, note the least count of the stop watch and record it in 
Observation Table 6.1. Now set the bar pendulum in motion by displacing  
it on one side. To count the number of oscillations, you can choose  
your reference point in two ways, as shown in Fig. 6.3. We prefer the  
second option because the reference point remains unaltered in this  
case. 

Begin your counting through the equilibrium position of the bar pendulum.  
It is important to simultaneously start the stopwatch. (There can be time  
lag between the starting/stopping the watch and the oscillation count  
due to reaction time, which is, on an average, 0.3s. This can introduce some 
error in the value of time period T.) An important point to consider here is to 
know the degree of accuracy that is necessary. Another point is to measure 
a time interval in which the amplitude of swing does not diminish 
significantly. To see this, you can note time for 1, 10, 20, 30, 50, 70, 100 
oscillations. You should take at least three observations in each case. 
Record your readings in Observation Table 6.1. Calculate the period of 
oscillation, T.   

Observation Table 6.1: Determination of optimum number of 
oscillations 

Least count of stop watch = ……………………s 

Sl. 
No. 

 

No. of 
oscillations 

(N) 

Time 
(s) 

T = TimeMean   

(s) 
(i) (ii) (iii) (mean)

1. 

2. 

3. 

4. 

5. 

6. 

7. 

1 

10 

20 

30 

50 

70 

100 

     

  
Conclusion: The optimum number of oscillations is……………. 

To decide on the optimum number of oscillations, observe the variation in the 
value of T.  When the difference between two successive values of T is less 
than 0.1 percent, it is acceptable. We expect the optimum number of 
oscillations to be 50. However, do not consider the number ‘50’ to be 
sacrosanct. Make your own decision. 

The least count of an 
ordinary stop-watch is of 
0.1 s. So whenever you 
have to measure time of 
the order of one second 
or so, you should use a 
more accurate automatic 
switching device, such as 
digital timer. 

The reaction time is the 
time interval between the 
input stimulus and its 
response. 
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6.3.3   Setting up and Measurements with Bar  
Pendulum 

To set up the bar pendulum and take measurements follow the steps given 
below. 

1. Fix one knife-edge in the hole nearest to one end of the bar pendulum.  
The other knife-edge is fixed in the hole nearest to the other end so that 
the two knife-edges are equidistant from and symmetrically placed with 
respect to the CG of the bar.   

2. Now suspend the pendulum vertically by resting it on one of the knife-
edges on a horizontal rigid support.  

3. As before, put a reference mark to denote the mean position of the 
pendulum.  

4. Measure the distance between the point of suspension (centre of the 
hole) and the CG of the bar. This gives us L.  

5. Displace the bar slightly aside and let it oscillate. You should ensure 
free oscillations in the vertical plane. Now you are ready to perform the 
experiment.  

6. Now set the bar pendulum in oscillations by gently pushing the free end 
of pendulum from equilibrium position. Make sure that the pendulum 
oscillates in a plane parallel to the support wall of the pendulum and 
does not touch the wall.  

7. Now measure the time for N (= 30) complete oscillations. Record your 
readings in Observation Table 6.2(a). Repeat this step three times. 

8. Invert the pendulum and note the time for the same number of 
oscillations.  Note the readings in Observation Table 6.2(b), which you 
will prepare on the lines of Observation Table 6.2(a). 

9. Now insert the knife-edges in the adjacent holes so that they are 
symmetrical about CG, as before. You will note that now the length of 
the pendulum has been changed and the time of N oscillations is 
expected to be different from the preceding value.  

10. Repeat observations by inserting the knife-edges in different holes and 
taking readings on either side of CG. At all times, the knife-edges should 
be symmetrical about CG. What happens as you approach the centre of 
the bar? You will observe that the time for N oscillations first decreases, 
takes a minimum value and then begins to increase. As you near the 
CG of the bar, it becomes very large.   

11. See what happens when the knife-edge in put at the central hole.  
You will note that the bar will not oscillate; it just gets struck up on one 
side.  

One complete oscillation 
of a pendulum is defined 
as the movement of 
pendulum from its 
equilibrium position to its 
extreme left and reaches 
to the extreme right and 
then comes to its 
equilibrium position 
again.
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Observation Table 6.2(a): Variation of time period with distance of a 
hole from CG 

Least count of the stop watch =………….……….s 
 

Sl. 
No.

Distance of the 
point of 

suspension 
from CG 
L (cm) 

Time for oscillations  
N = 30  

 
2LT  

(cm s2) (i) (ii) (iii) Mean 
Time 

period 
T (s) 

 

1. 

2. 

3. 

4. 

5. 

6. 

       

Plot a graph between T and L on either side of CG as abscissae. You will  
get two curves which are symmetrical about the CG of the bar (Fig. 6.4). 
Now you draw a line parallel to the x-axis. At how many points does it 
intersect these curves? The number of points should be four, say at J, K, M 
and N, as shown in Fig. 6.4. At all these points, the period of the pendulum is 
the same.  

 

Fig. 6.4: Plot of time period with distance of point of suspension from CG. 

Prepare a similar 
Observation Table 6.2(b) 
for noting the readings, 
taken by inverting the point 
of oscillation at each step.

L

L (cm) L (cm)CG 
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Measure distances JM and KN.  How do you interpret these? Each of these 
distances represents the length of an equivalent simple pendulum, L . Using 
Eq. (6.7), you can compute the acceleration due to gravity. 
 
Result: Acceleration due to gravity = ……………………………………...... 
 
 

To calculate the radius of gyration, we rewrite Eq. (6.6) as  

 2
2

2
2

2 44
rk

g
L

g
LT  (6.8) 

This equation suggests that if you plot LT 2 versus L2, you will obtain a 

straight line, whose slope is 
24

g

2

and intercept is 
2

24 ,rk c
g

2
2k 2 ,c say. 

Hence 

 
slope
4 2

g  (6.9) 

and the radius of gyration is given by  

   2
2

4
cgkr   

or              
2
cg

kr  (6.10) 

Result: i) The radius of gyration of the bar pendulum is …….... m    

  ii) The acceleration due to gravity is ………………..…...ms 2 

SAQ 1 –  Bar pendulum 

i) Why is it necessary to put the knife-edges symmetrically about CG? 

ii) Name two sources of error in your experiment. 
 
 

6.3.4    Determination of the Radius of Gyration 
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DETERMINATION OF  

ACCELERATION DUE TO 
GRAVITY BY KATER’S PENDULUM 

Structure 

7.1 Introduction 
Expected Skills 

7.2 Basic Theory and Construction of  
Kater’s Pendulum 

 

7.1   INTRODUCTION 
You know that a rigid body performing harmonic oscillations about a point of 
suspension is known as compound pendulum. In the last experiment you 
worked with a bar pendulum, which is a regular shaped rigid body with its 
centre of gravity (CG) coinciding with its centroid (body centre). But in 
practice, the shape of the rigid pendulum can be arbitrary and the CG need 
not be situated at its centroid. One such rigid pendulum is shown in Fig. 7.1. 
When the pendulum is hanging freely, its CG shown by point G lies vertically 
below the point of suspension S. When this pendulum is given a small 
angular displacement, it performs simple harmonic motion about its 
equilibrium position. 

In such a pendulum, there exists another point P on the other side of CG, 
which has the same time period of oscillations. It is called the centre of 
oscillation (read the margin remark on the next page). 

In the experiment on bar pendulum, you have learnt that when the distance 
between the point of suspension S and centre of gravity G is L, a point P 
corresponding to the centre of oscillation exists on the other side of G at the 

distance 
2

,rk
L

where rk  is the radius of gyration of the body about an axis 

passing through G. Hence the distance between S and P is 

 
2 2 2
r rk L kL L

L L
 (7.1)

7.3 Experiment with Kater’s Pendulum 
 Setting up the Apparatus 

 Taking Measurements 
 

Fig. 7.1: Compound  
pendulum.  

S 

G 

P 

L 

EXPERIMENT 7
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That is, the centre of oscillation lies at the equivalent length of the simple 
pendulum (L ) from the point of suspension. Since the period of oscillation is 
same for both these points, we can use them interchangeably. In this 
experiment you will use Kater’s pendulum to obtain the value of gravitational 
acceleration by taking readings of time periods of oscillations around both 
these points. 

Expected Skills 
After performing this experiment, you should be able to: 

understand the construction of Kater’s pendulum;  

 assemble the apparatus of Kater’s pendulum; 

 ascertain the centre of gravity of the assembly and balance the 
pendulum; 

 take the readings for time period of oscillations around point of 
suspension and centre of oscillation; and 

 use the observed time periods to calculate the value of g. 

The apparatus required for this experiment is given below. 

 

 

Let us now describe the underlying theory of this experiment and 
construction of the apparatus. 

7.2   BASIC THEORY AND CONSTRUCTION OF 
KATER’S PENDULUM 

Before starting the experiment, you should learn about the construction of 
the Kater’s pendulum. It is a compound pendulum based on the 
interchangeability of the point of suspension and the centre of oscillation. It 
consists of about 1 m long metal rod with circular cross-section fitted with 
two knife edges. Between the ends of the bar and knife edges, two 
cylindrical weights m1 and m2 are fitted. These cylinders are of the same 
shape but made of different materials viz. wood and metal. This gives rise to 
asymmetric weight distribution along the rod and hence its centre of gravity 
G shifts away from its geometrical centre. Two sliding counter weights made 
up of wood and metal (W1 and W2) are fitted between the two knife edges. A 
photograph of a Kater’s pendulum is shown in Fig. 7.2a, while its schematic 
diagram is given in Fig. 7.2b. 

Position of the two knife edges and weights is adjusted in such a way that 
the period of oscillation of the pendulum about both the knife edges is equal. 
In this condition, when one knife edge acts as point of suspension, the other 
one represents the centre of oscillation and the distance between the two 
knife edges is equal to the equivalent length of the simple pendulum L , 
whose time period is given by 

Centre of oscillation is 
very important for the 
sports persons using 
bats (or rackets) for their 
game. If the ball strikes 
at the point of centre of 
oscillation of the bat, it 
simply rotates by the 
impact of the ball, but the 
hand of the player does 
not feel any impact. This 
point is also known as 
Centre of Percussion or 
Sweet Point. 

Apparatus required  
 

Kater’s pendulum; suspension bracket fixed on the wall, meter scale 
and stop watch. 

Fig. 7.2: a) Image of 
Kater’s pendulum;          
b) Schematic 
diagrams.  

(a) (b) 
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g
LT 2 (7.2)

Now, let 21  and TT  be the periods of oscillation about the knife edges 

21  and AA , respectively. If the distance of 1A  from G is 1L  and that  
between  2A  and G is ,2L then, from Eq. (7.1), we have  

 
gL
kLT

gL
kLT rr

2

22
2

2
1

22
1

1 2  and2  

i.e.,  22
12

2
11

4
rkL

TgL  (7.3a) 

and   22
22

2
22

4
rkL

TgL  (7.3b) 

With some algebra the acceleration due to gravity is given by (read the 
margin remark) 

  

21

2
2

2
1

21

2
2

2
1

28

LL
TT

LL
TT

g  (7.4) 

When the values of 21  and TT  are close to each other, the second term in the 

denominator becomes negligible and we can write 

  2
2

2
1

21
2 )(8

TT

LL
g  (7.5) 

When the Kater’s pendulum is properly balanced, we have )(  21 TTT   

and get 

  2
21

2 )(4
T

LLg  (7.6) 

Now, under the balanced condition, the length between the two knife edges 
)( 21 LLL  represents the equivalent length of the simple pendulum. 

7.3   EXPERIMENT WITH KATER’S PENDULUM 

You have learnt that construction of Kater’s pendulum is quite complicated 
and so it is very important to arrange all its components correctly before 
starting the measurements using it. You should assemble the apparatus as 
described below. 

Subtracting Eq. (7.3b) from 
Eq. (7.3a), 

2
2

2
1

2
22

2
112 )(

4
LLTLTLg

    

    
 

2
2

2
1

2
22

2
1124

LL

TLTL
g

 
Using the method of partial 
fractions, we get 

)(2)(2
4

21

2
2

2
1

21

2
2

2
1

2

LL
TT

LL
TT

g
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7.3.1    Setting up the Apparatus 

1. Keep the pendulum in horizontal position on a table and arrange the knife 
edges (A1 and A2) and weights on the bar as shown in Fig. 7.3. 

 

 

  
Fig. 7.3: Arranging Kater’s pendulum. 

Here m1 and W1 are wooden weights while m2 and W2 are metal weights, 
which are much heavier than m1 and W1. 

2. Place the counter weights W1 and W2 in the middle of the bar as shown 
in the Fig. 7.3. 

3. Fix the knife edges A1 and A2 about 20 cm from both ends of the rod 
such that their sharp edges face each other. 

4.   Fix m1 and m2 about 15 cm from the two ends of the rod. 

5. Now place the meter scale on the table and measure the distance 
between the knife edges (L ) and write it in Observation Table 7.1. This 
distance will be about 65 to 75 cm depending on the rod length, and L  
will be constant during the entire experiment. 

7.3.2    Taking Measurement 
 
1. Place this pendulum horizontally on a sharp edge object like metre scale 

and balance it horizontally to determine the centre of gravity of this 
assembly. Mark the point (G) where it balances perfectly. This is the 
balance position of the pendulum. Measure the distance between this 
point and knife edge A1 as shown in Fig. 7.4 and note it as length L1 in 
the Observation Table 7.1 at Sl. No. 1. Also note down the distance 
between G and A2 as L2. Obviously you will have .21 LLL  

2. Now place the pendulum assembly vertically on the wall bracket such 
that it is suspended by knife edge A1. Make sure that only the knife edge 
is touching the glass slides of the bracket and no other part of the 
pendulum is brushing with the bracket on the wall. 

3. Now give a gentle oscillation to the pendulum such that it performs 
simple harmonic motion in the plane parallel to the support wall without 
touching anywhere. 

 Using a stop watch measure the time required for 5 oscillations and note 
it as T1 in the Observation Table 7.1 against Sl. No. 1. Calculate time 

period for single oscillation: .
5
1

1
T

t  Fig. 7.4: Lengths on 
Kater’s pendulum.  

G 

L’ 

L1 

L2 

A2 

A1 

W1 m2 A1 m1 A2 W2 
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4. Now rotate the pendulum assembly and rest it on knife edge A2. Again 
measure the period for 5 oscillations and note it as T2. Calculate time 

period of single oscillation: .
5
2

2
T

t  

5. Now remove the pendulum from the bracket and place it on the table 
horizontally. 

6. Move weight W2 towards A1 by 1 cm and fix it properly. 

7. Obtain the new position of G. Now, measure new L1 and L2 as described 
in step 1 and note these values in Observation Table 7.1 at Sl. No. 2. 

8. Repeat steps 2 to 4 and note T1 and T2 at Sl. No. 2 and calculate new t1 
and t2. 

9. If the difference between t1 and t2 is less than the observations at Sl. 
No.1, continue to shift W2 further towards A1 by 1 cm. If the difference 
has increased, shift W2 towards A2 (in the opposite direction). 

10. Repeat steps 2 to 4 to obtain L1, L2, T1 and T2 and note them at 
subsequent serial numbers (from Sl.No.3 onwards) in the Observation 
Table 7.1 and calculate t1 and t2. 

11. Applying the test given in step 9, decide the direction of movement of W2 
on the bar and repeat the above procedure. 

12. You should continue to move W2 and note t1 and t2 until the difference 
between them is less than 0.01 s s). 01.0tt( 21  

13. Now take the readings of T1 and T2 for 20 oscillations each and note 
them in Observation Table 7.2. Calculate t1 and t2 by dividing T1 and T2 
by 20. Check whether the difference between t1 and t2 is still less than 
0.01s. If not, move W1 (wooden counter weight) and repeat steps 2 to 10 
for 20 oscillations till you obtain a balance position. [Since W1 is much 
lighter than W2 displacing W1 over larger lengths will affect t1 and t2 very 
slightly and hence it is useful for fine tuning.] 

14. When you obtain the balance position for 20 oscillations, repeat the steps 
2 to 4 for 50 oscillations and note T1 and T2 in Observation Table 7.3. 
Repeat this measurement 3 times without disturbing the positions of W1 
and W2 and calculate t1 and t2 each time by dividing T1 and T2 by 50. 

15. Calculate average values of t1 and t2 and note them in Observation     
Table 7.3. 

16. Now remove the pendulum from the wall bracket and place it horizontally 
on a table. Following Step 1 again, obtain the values of L1 and L2 and 
note them below the Observation Table 7.3. 

17. Calculate LLL 21 . It should be the same value that you had obtained 

at Point 5 in the Setting up the Apparatus Section (7.3.1) and noted on 
the top of Observation Table 7.1. 
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18. Calculate .21 LLL  

19. Using the formula given in Eq. (7.4), calculate the value of g. 

Observations: 

Observation Table 7.1: Readings by moving W2 (metal) 

Distance between knife edges = L  = …………….. cm =  …………m 

Sl. 
No.

L1(m) L2(m) T1 for 5 
oscillations 
suspended 
from A1 (s)

T2 for 5 
oscillations 
suspended 
from A2 (s) 

5
1

1
Tt =  

(s) 

5
Tt
5
T2

2  

(s) 

1.       

2.       

3.       

       

Observation Table 7.2: Readings by moving W1 (wood) 

Sl. 
No.

L1(m) L2(m) T1 for 20 
oscillations 

(s) 

T2 for 20 
oscillations 

(s) 

t1 = T1/20 
(s) 

t2 = T2/20 
(s) 

1.       

2.       

3.       

4.       

Observation Table 7.3: Readings for 50 oscillations 

Sl. 
No. 

T1 for 50 
oscillations 

(s)

T2 for 50 
oscillations 

(s) 

t1 = T1/50 

(s) 

t2 = T2/50 

(s) 

Average  
t1 (s) 

Average  
t2 (s) 

1.       

2.     

3.     

Balancing length L1 (from A1 to G) = …………….. cm =  …………m 
Balancing length L2 (from A2 to G) = …………….. cm =  …………m 

Calculations: 
   m..........)(21 LLL  

   m..........)(21 LLL  
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From the average values in Observation Table 7.3, calculate 

   22
1 s ..................t  

   22
2 s ..................t  

From Eq. (7.4), calculate the acceleration due to gravity, 

  .ms 8 2

21

2
2

2
1

21

2
2

2
1

2

LL
tt

LL
tt

g  

     .ms 8 2
2
2

2
1

2
2

2
1

2

L
tt

L
tt

 
Results:

 
Acceleration due to gravity, 

  g = ………… ms 2. 
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STUDY OF THE MOTION OF A 

SPRING-MASS SYSTEM: 
DETERMINATION OF SPRING 

CONSTANT AND ACCELERATION 
DUE TO GRAVITY  

Structure 

8.1 Introduction 

Expected Skills 

8.2 Theory of Spring-Mass System  
 
 

8.1   INTRODUCTION 

In the previous experiment, you have determined acceleration due to gravity using Kater’s 
pendulum. We now investigate spring constant and value of acceleration due to gravity, , 
using the spring-mass system.  

We find many uses of spiral springs in daily life. Springs hold dry cells in proper position in a 
transistor set and a pocket calculator. Springs are used as shock absorbers in automobiles 
and railway wagons. You may have also used yourself a bull-worker or seen body-builders 
using it. Do you know that it essentially consists of springs? In wrist watches, springs control 
oscillations of the system. In all these cases, the basic difference in the springs being used is 
in their spring constants. So to decide on the type of a spring for a particular purpose, you 
must know its spring constant. In a physics laboratory you can determine the value of spring 
constant, , by: 

i) measuring extension in the spring for a given load (static method), and 

ii) determining the period of harmonic oscillations of a spring-mass system (dynamic 
method). 

In this experiment, you will learn the theory of spring-mass system in Sec. 8.2. In Sec. 8.3 
you will determine spring constant and obtain the value of . 

8.3 Determination of Spring Constant 

Static Method of Measuring 
Dynamic Method of Measuring  

8.4 Determination of the Acceleration 
due to Gravity 

EXPERIMENT 8
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Expected Skills
After performing this experiment, you should be able to: 

 measure extension of a spring for a given load and calculate its spring 
constant (static method); 

 measure the period of oscillation of a spring-mass system for different 
loads and calculate  (dynamic method); 

 compare the accuracies of static and dynamic methods; and 

 determine the value of . 

The apparatus required for this experiment is listed below. 

 

 
 

8.2   THEORY OF SPRING-MASS SYSTEM 

In Experiment 6, you investigated the question: What determines the values 
of  for a bar pendulum? You may now ask: Can we make similar 
investigations for a spring-mass system? The answer is in affirmative. In this 
experiment you will calculate the spring constant of a spring in two different 
ways: (i) by measuring extension for a given load, and (ii) by measuring the 
period of harmonic oscillations of a spring-mass system.   

Refer to Fig. 8.1, which shows a spring beside a metre scale suspended on 
the stand. Fix a sharp-tipped pointer (needle) at the lower end of the spring. 
If you do not get a needle, you can make a pointer of cardboard by cutting it 
in the shape of a triangle. Then you have to attach its base to the straight 
end of the spring so that its vertex moves along the scale. This helps in 
minimising parallax error. Suspend a hanger (which itself is a known weight, 
equal to any other slotted weight) in the hook of the spring. (Alternatively, 
you can tie a pan to the lower end of the spring and put weights.) Normally, it 
is advisable to put an initial load on the hook as it will take care of the kinks 
in the spring. This implies that the choice of the initial position does not 
matter.   

Stretch the spring by pulling the hanger downwards through a small distance 
and then let it go. The spring-mass system will execute vertical oscillations. 
Ensure that the pointer does not stick anywhere and the oscillations are free. 
Now your apparatus is ready and you can start your experiment. But before 
you do this, do spend a few minutes in making qualitative observations as to 
how extension/period changes when the mass is changed within elastic 
limits. This limit will be different for different springs. So you should consult 
your counsellor before putting a load on the spring. 

Apparatus required 

A spiral spring, slotted weights in multiples of 100g, stop watch, a 
laboratory stand and a 50 cm scale 

Fig. 8.1: A spring-mass 
system. 
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When we load the spring by putting a weight, a restoring force is set up in the 
spring due to elasticity. It tends to oppose the applied force and bring the 
system back to its original state. If extension is small compared to the original 
length of the spring, the magnitude of restoring force exerted by the stretched 
spring on the mass is given by Hooke’s law: 

  =  , (8.1) 

where  is extension in the spring and , the spring constant. 

From Eq. (8.1) it is clear that once we know extension as a function of load,  
can be calculated easily. It is with this purpose that we attach a pointer to the 
lower end of the spring. This method of determining  is known as 

. 

You may now like to know: Is there some other method also for determining ? 
We can use the so-called . It is based on observing the period 
of harmonic oscillations of the spring-mass system. 

In Unit 16 of theory course on Mechanics, you have learnt that a spring-mass 
system executes SHM like a simple pendulum, provided the extension is not 
large. Another question that comes to our mind immediately is: Does gravity 
affect the frequency of oscillations? Gravity has no effect on the frequency of 
oscillations. The period of oscillation is given by 

 /2  (8.2) 

This relation shows that we can determine  by knowing the period of 
oscillations for a given mass. The value of  will depend on the nature of 
spring. For a thin spring,  could be a few grams. 

8.3   DETERMINATION OF SPRING CONSTANT 

As discussed in theory, the spring constant can be determined by two methods 
viz. static and dynamic. Now we explain the procedure to determine  using 
these two methods. 

8.3.1    Static Method of Measuring 

The procedure for measuring using static method is as follows: 

1. Load the spring by putting a weight and record the corresponding 
equilibrium position of the pointer. Treat this equilibrium position of the 
pointer on the scale as your initial observation. Record your reading in 
Observation Table 8.1.  

2. Now increase the load in steps by adding equal weights each time.  

3. For each load record the position of the pointer.  

4. Before taking a reading, you should wait for some time so that the pointer 
comes to rest.  

5. Take at least six observations. 

When an external force 
is applied on a body, it 
tries to retain its shape 
and size. And as soon as 
the applied force is 
removed, the body 
regains its original state. 
This property is called 
elasticity. Its maximum 
limit is called elastic 
limit. If applied force 
exceeds elastic limit, it 
produces permanent 
deformation and the 
body fails to regain its 
original shape and size 
even when the applied 
force has been removed. 
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Observation Table 8.1: Extension as a function of load 

Sl. 
No. 

Load on 
the spring 

(g) 

Reading of the pointer on the metre scale (cm) 

Increasing load Decreasing 
load 

Mean Reading 

1. 

2. 

3. 

4. 

5. 

6. 

    

 

 

To ensure that you are working within the permissible elastic limit, you should 
record the position of the pointer by unloading the spring in the same steps. 
Again tabulate your readings in Observation Table 8.1. Do these readings 
differ from those recorded while loading the spring? If observations for a given 
weight are nearly the same, both while loading and unloading, you can be  
sure that you are certainly working within the elastic limit. Note that you have 
to observe the mean reading of the pointer for a given load.   

Now you should plot a graph between the load and the corresponding 
elongation. Conventionally, we plot the independent variable along the -axis 
and the dependent variable along the -axis. Which physical quantity will you 
plot for this experiment along the -axis? Obviously, load should be plotted 
along -axis. Draw the best fit line through observed points as shown in       
Fig. 8.2. (For a good steel spring, we expect the graph to be linear.) 

 

 

Fig. 8.2: Best fit line through observed points. 

If the extension 
corresponding to mass  
is 0, we can write 

 = 0       (i) 

Note that we are 
considering magnitudes 
only. 

Let  be the elongation 
corresponding to an 
additional load . Then 
we have 

( + )  =  ( 0 + ) (ii) 

From (i) and (ii), we get 

 =  

or   = 
slope

  (iii) 

Suppose that the graph 
paper is somehow not 
available in your 
laboratory. You may then 
ask: How to calculate ? 
You will have to use    
Eq. (iii).  Suppose you 
have taken seven 
readings. Then calculate 
extension  for load 
difference between 
readings 4 and 1;5 and 
2; 6 and 3; and 7 and 4.  
Calculate mean value of 
 and hence . 
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From your graph, calculate the extension for a load of 2 N. 

Does your straight line pass through the origin? The inverse of the slope of the 
straight line is a measure of the spring constant. To calculate the slope, you 
should use two widely separated points on the straight line. These should be 
other than observation points. Use  = 9.8 ms- 2 to calculate and express 
your result in SI units. 

Error Analysis  

Calculate the change in slope of the straight line caused by drawing the lines 
of maximum and minimum slopes.  This gives maximum error in the slope. 
Using  = 9.8 ms 2 calculate the error in the value of in SI units. 

Conclusion: The spring constant of the given spring = …….…    …..… Nm 1 

SAQ 1 –  Static method 

  

 

 

In this method, you will be required to measure the period of simple harmonic 
oscillations. You must ensure that oscillations of the system hanging vertically 
are longitudinal. That is, there should be no lateral oscillations. Otherwise, the 
motion will not be simple harmonic. 

1. Put a load on the hanger and note the position of the pointer on the scale. 
Take it as the equilibrium position. Now stretch the spring by pulling the 
hanger slightly downward and then release it. The system will begin to 
oscillate. In case there is no lateral oscillation, your apparatus is set. Bring 
it to rest. Also ensure that the spring executes 20-30 oscillations before 
their amplitude shows visible decrease.  

2. Note the least count of the stop watch and record it in Observation    
Table 8.2.  

3. Now set the spring-mass system into oscillations. Allow the first few 
oscillations to pass so that there is no anharmonic component. Begin your 
counting through the equilibrium position and simultaneously start the 
stop watch. Note the time for , say 30, complete oscillations.  

4. To minimise the error in , it is desirable to take time for 50 or more 
oscillations. However, you must ensure that the amplitude of oscillations 
does not decay significantly. Enter your reading in the Observation Table 
8.2. Add more weights in the hanger and repeat the procedure at least 
five times.  

5. Tabulate your observations.  

6. How does the time period change? As before, the procedure may be 
repeated by decreasing the load in same steps. Calculate the mean time 
for each load. 

8.3.2    Dynamic Method of Measuring  
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Observation Table 8.2: Measurement of time as a function of load 

Least count of stop watch = ……………… s 

Number of complete oscillations counted each time ( ) =………. 

Sl.  
No. 

Load on 
the 

spring  
(g) 

Time for  complete oscillations (s) Time period 

t

T =
N

  

(s) 
with load 

increasing 
with load 

decreasing 
mean  

( ) 

1. 

2. 

3. 

4. 

5. 

6. 

          

Plot 2
  versus . Draw the best possible straight line as shown in          

Fig. 8.3. Does it pass through the origin? From the slope of the straight 
line, you can easily calculate .  

7. Check if this value agrees with that obtained by the static method. The 
two values should be same or nearly equal. (In case you get to know the 
standard value of for the material of spring from your counsellor or a 
book, you can judge whether the dynamic method is more accurate than 
the static method or not.) 

 

Fig. 8.3: Expected plot of 2 versus  
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i) Extrapolate the graph between 2 and  backward and interpret the 
intercept. 

ii) Use your graph to determine  for a load of 3N. 

As before, you can compute error in  by drawing lines of maximum and 
minimum slopes. What is the relative change in the value of ? 

 Result: Spring constant of the given spring = ….….…. ……………Nm 1 

SAQ – 2   Dynamic method 

 

 

8.4 DETERMINATION OF THE ACCELERATION 
DUE TO GRAVITY 

We can use these set up to determine the value of acceleration due to gravity, 

Firstly, we can take Eq. (8.2) and rewrite this equation by taking square on 
both sides as 

  22 4       (8.4) 

From Fig. 8.3, which shows the graph between 2 (on -axis) and (on  

-axis), the value of slope obtained is /4 2  or .
slope)(
4 2

 After obtaining 

the value of using dynamical method, the value of can be calculated using  

Eq. (iii) given in the margin remark of  Sec. 8.3.1 
slope

 or 

slope  

  Value of  = …………………………. 
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DETERMINATION OF  
FREQUENCY OF TUNING 

FORK USING SONOMETER 

Structure 

9.1 Introduction 
Expected Skills 

9.2 Stationary Waves in a  
Stretched Wire 

9.3 Variation of Wavelength with Tension  

9.1   INTRODUCTION 
In the previous experiment, you have learnt to determine the spring constant 
and value of acceleration due to gravity using a spring-mass system. We now 
determine the frequency of a tuning fork using sonometer. 

You all must have enjoyed the pleasing music produced by string instruments 
like sitar, violin, guitar, ektara, etc. Do you know how stringed instruments 
produce music? When the string of such an instrument is plucked, bowed or 
struck, it begins to vibrate and produces sound. The quality of sound 
depends on the frequency of vibration of the stretched string. Now the 
question arises: What factors determine the frequency of vibration of a 
string? How are these factors related to frequency?  In this experiment, you 
would discover answers to such questions.   

You may have observed that in an orchestra, a violinist tightens or loosens 
the pegs of the instrument while tuning with other musicians. (As the peg is 
tightened or loosened, a portion of the string is either wound or unwound 
around the peg). As a result, tension in the string changes. This suggests that 
the frequency produced by the string of the violin depends on the tension in it.  
Can you think of other parameters that may influence the frequency of 
vibration of a string? What happens if you take strings of same material having 
different thicknesses or strings of different materials but same thickness? Well, 
we expect that the frequency of vibration of the string in each case should 
differ. This means that the mass per unit length of the string also influences its 
frequency of vibration.  

9.4 Variation of Wavelength with Mass 
per Unit Length 

9.5 Relation between Wavelength and 
Frequency 

Tuning a given musical 
instrument with 
another means 
adjusting the frequency 
of the given instrument 
so that it is the same 
as that of the other 
one. 

EXPERIMENT 9
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You may have seen a veena. In this musical instrument, strings of unequal 
lengths are tied between two fixed ends. You may have also seen that once a 
musician has tuned the instrument, she moves her fingers along its string to 
produce music. In this way, she varies the vibrating length in order to produce 
different notes. This suggests that the frequency of vibration of the string 
depends on its vibrating length as well. We know that the length of the 
vibrating segment of the string is related to the wavelength of the stationary 
waves set up in it. Hence, we expect that there exists a definite relationship 
between the wavelength and frequency. 

The aim of this experiment is to know how frequency of vibrations of a 
stretched string depends on tension, mass per unit length and its vibrating 
length. In this case, any change in the frequency can be attributed to the 
change in that particular parameter.   

It is possible to set up waves of known wavelength in a wire. But it is more 
convenient to make a wire vibrate with a known frequency. So we would 
discover the effect of tension and mass per unit length of the wire on the 
wavelength, keeping the frequency constant. Therefore, we would like you to 
do this experiment in three parts. In the first part, you should investigate how 
the wavelength changes with tension in the wire while the frequency of 
vibration of the wire and its mass per unit length are kept fixed. In the second 
part, you will investigate how the wavelength varies when wires of different 
thicknesses (but same material) or different materials (but same thickness) are 
used. That is, you will learn how wavelength varies with mass per unit length 
of the wire when tension in the wire and frequency are not changed. In the 
third part, you will establish the relation between frequency and wavelength, 
keeping the tension and mass per unit length of the wire fixed. 

Expected Skills 
After performing this experiment, you should be able to: 

 set up stationary waves in a stretched string;  

 investigate the dependence of wavelength of stationary waves on 
tension in a string and its mass per unit length; 

 establish the relation between wavelength and frequency; and 

 obtain the expression for velocity of transverse waves on a string. 

The apparatus required for the experiment is listed below. 

 

 

 

 

 

Apparatus required 

Four iron wires of different thicknesses (Alternatively 4 wires of different 
magnetic materials), sonometer, hanger, slotted weights, an electromagnet 
with a 6 volt a.c. transformer, six tuning forks of known frequencies, rubber 
pad, metre scale, screw gauge, a chemical balance and a weight box. 
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9.2   STATIONARY WAVES IN A STRETCHED WIRE 

Setting up of Stationary Waves 

The measurement of tension (T) and mass per unit length ( ) of a stretched 
wire are rather routine exercises. But to make a precise determination of 
wavelength, we set up stationary waves. Stationary waves are formed when 
two identical progressive waves moving in opposite directions are made to 
superpose. The stationary waves do not move with time in either direction.  
(For this reason, they are also sometimes referred to as standing waves.)  
From your school physics, you will recall that stationary waves can be 
produced in air columns as well as stretched strings. Here we intend to set up 
stationary waves in a sonometer wire. 

Refer to Fig. 9.1. It shows a sonometer, which consists of a hollow wooden 
box with circular holes, a peg at one end and a pulley on the other. One end of 
a wire is fixed to the peg and the other end, passing over a smooth pulley, 
carries a hanger. (In place of hanger, you can also use a pan.) By placing 
weights on the hanger, the string can be stretched. The wire passes over 
 two bridges B1 and B2. While performing experiments with a sonometer, the 
string is made to vibrate in unison with the source of sound, which may be a 
tuning fork or an electromagnet. To achieve this, the vibrating length of the 
wire between the bridge is adjusted by sliding the bridges between the peg 
and the pulley. This condition (of unison) is said to be ensured when a  
V-shaped paper rider placed in the middle of the wire between the bridges falls 
down. 

 
Fig. 9.1: Stationary waves in a stretched string of a sonometer. 

In your school physics, you have learnt that when a vibrating tuning fork is 
placed on the sounding board of the sonometer, the air inside the sonometer 
begins to vibrate. It makes the wire to execute forced vibrations leading to 
formation of transverse waves. In the region B1 B2, these transverse waves are 
reflected at the fixed points B1 and B2. As a result, we obtain a set of incident 
and reflected waves travelling in opposite directions. Their superposition gives 
rise to stationary waves. The wire between the bridges then vibrates in one or 
more well-defined segments, as shown in Fig. 9.2. Note that there are some 
points at which the wire remains motionless at all times. On the other hand, at 
some other points, the waves reinforce strongly and the wire vibrates 
vigorously. The points corresponding to zero amplitude of vibration are called 
nodes (N), whereas points with maximum amplitude are called antinodes (A). 
The simplest mode of vibration occurs when the string vibrates in a single loop 

A wave which transports 
energy as it propagates 
in space is said to be 
progressive. In a 
stationary wave, no 
energy is transported. 

The sonometer wire is 
said to vibrate in unison 
with the source of sound 
when the natural 
frequency of the wire 
equals the frequency of 
the source.  

The vibrations are said to 
be forced vibrations 
when a body vibrates 
with the frequency of the 
applied periodic force. In 
this condition, the energy 
fed from outside equals 
the energy lost by the 
body. 

B2 B1 
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(Fig. 9.2a). The frequency of vibration corresponding to this mode is known as 
the fundamental frequency of vibration. 

 

Fig. 9.2: Stationary waves set up in a wire fixed at both ends. 

9.3   VARIATION OF WAVELENGTH WITH 
TENSION 

In this part of the experiment, you have to keep mass per unit length ( ) of the 
wire and its fundamental frequency of vibration constant.  Working with a wire 
of uniform cross section ensures constancy of . To achieve the latter, you can 
use either a tuning fork or an electromagnet. We advise you to use an 
electromagnet, if available, because it can make the wire execute sustained 
vibrations. 

In case you are not provided an electromagnet, choose a tuning fork of known 
frequency. (You may also discuss with your counsellor.) As you know, we 
have “musical ears”. You can get close to the condition of unison using your 
ears. To do this, strike the tuning fork on the rubber pad and hold it near your 
left ear. Strike the sonometer wire between the bridges with your finger and 
hold your right ear near the sonometer wire. As long as the frequencies 
produced by the tuning fork and sonometer wire are not in unison, you will 
hear two distinct sounds with different frequencies. But by adjusting the 
position of bridges, gradually you can attain near unison condition. Next strike 
one of the prongs of the tuning fork with a rubber pad and press the stem of 
the fork on the sounding board of the sonometer. Do not touch its U-part. (If 
you do so, the vibrations of tuning fork will die rapidly.) You will observe that 
the wire begins to vibrate resulting in stationary waves. The paper rider placed 
in the middle of the wire will fall when it resonates with the turning fork. 

While working with a tuning fork, you may observe that vibrations may not be 
sustained for long. Then you should strike the prong of tuning fork again with 
the rubber pad and place it on the sounding board to determine the resonating 
length for each load. Moreover, since the energy supplied by the tuning fork to 
the vibrating wire is many-times less than that given by the electromagnet, the 
wire will not vibrate vigorously. Therefore, in this case, you have to rely more 
on the paper rider, which falls off or vibrates vigorously when unison occurs. 

The experimental arrangement for generating stationary waves in a sonometer 
wire using an electromagnet is shown in Fig. 9.3. Connect the electromagnet 
to a 6 V transformer and place it near the middle of the wire.  When the 
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Suppose that the electromagnet is connected to a source of direct current.  
Will the wire vibrate? If so, what will be its frequency of vibrations? 

electromagnet is connected to a source of AC power supply, the core of the 
electromagnet will be magnetized twice with opposite polarities in each cycle. 
As a result, the sonometer wire gets attracted towards the electromagnet twice 
in each cycle and begins to vibrate. Since the frequency of AC is 50 Hz, the 
wire will vibrate with a fixed frequency of 100 Hz. 

 
Fig. 9.3: Experimental arrangement for generating transverse stationary waves 

in a sonometer wire using an electromagnet. 
 

SAQ – 1    Inducing forced vibrations 
 
 
 

Stretch the wire by putting an appropriate weight on the hanger. (You should 
consult your counsellor in determining this.) If the mass of the hanger is m kg 
and a weight of M kg is used in stretching the wire, the tension in the wire will 
be T = (M + m)g N where g is acceleration due to gravity. 

Keep the bridges B 1 and B2 on the sonometer at the largest possible 
separation and switch on the current through the electromagnet. The wire will 
begin to vibrate. This means that the apparatus is now in working condition 
and you can begin your investigations. 

Your objective is to determine the length of the wire for which the sonometer 
vibrates in the fundamental mode. This happens when the wire vibrates in a 
single loop with maximum amplitude. This length corresponds to the 
separation between two consecutive nodes and is equal to half the wavelength 
of the stationary wave in the wire. 

When you switch the current on, the wire is supposed to vibrate with a 
frequency of 100 Hz. But you may not see the wire vibrate at all. Do you know 
why? This is likely to happen if the length of the wire between B1 and B2 is 
much different from that corresponding to the fundamental frequency and the 
amplitude of forced vibration set up in the wire is extremely small. So you have 
to adjust the length of the vibrating wire. To do this, keep one of the bridges 
(say, B1) fixed and move the other bridge (B2) towards it slowly. What do you 
observe? Does the amplitude of vibration increase? If so, continue to decrease 
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the vibrating length of the wire by moving the bridge B2 closer to B1 until the 
amplitude of vibration becomes maximum. You will then clearly see that the 
wire is vibrating in a single loop of significant amplitude. If you place a paper 
rider gently in the middle of the wire now, it will be thrown off. Note the weight 
and the corresponding length between B1 and B2 by noting their positions on 
the metre scale attached to sonometer board. Record the readings in 
Observation Table 9.1. Next, move the bridge B2 closer to B1 by a small 
distance (2 3 cm). What do you observe? Does the amplitude of vibration 
change? If so, the frequency of the vibrating wire is not 100 Hz. Then, slowly 
move the bridge B2 away from B1 and locate the position where wire vibrates 
in unison again. You should repeat this act 3-4 times for a given tension to 
minimize the error in your observation. You will also hear maximum sound 
when the vibrating wire is in unison with the forced frequency.  

Now, you change the tension in the wire by adding weights of 0.2 kg or 0.5 kg 
in equal steps and measure the resonating length of the wire in each case 
following the procedure outlined above. You will observe that the resonating 
length increases with increasing load. Enter your data for each step in 
Observation Table 9.1. You should not load the wire beyond its elastic limit. 
(Consult your counsellor to know this value). 

To check that you are working within the permissible range of tension, you 
should repeat the above procedure by unloading the wire in the same equal 
steps and measure the resonating length of the wire. Tabulate each reading.  
Do these lengths differ from those obtained for corresponding tension while 
loading the wire? We expect these to be almost the same. 

Observation Table 9.1: Dependence of wavelength on tension 
Frequency of vibration of the wire =…………………………Hz 

Least count of metre scale            =……………………...….cm 

Mass of the hanger (m)      =…………………………kg 

Sl. 
No. 

 
 

Weight 
placed 

on 
hanger, 

 (kg) 

Tension 
= ( + )  

(N) 
 

Resonating length of the 
wire between the bridges 

1 and 2 (m) 

Mean 
resonating 
length for a 
given load, 

(m) 

Wave-
length 

 = 2
(m) 

 
Load 

increasing 
Load 

decreasing 
1(m) Mean 

Value 
1 

2(m) Mean 
Value 

2  
 

1. 
        

  
  

 
2. 

        
  
  

 
3. 

        
  
  

 
4. 
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Plot a graph between  and T 1/2. Choose the points corresponding to 
T1 = 64 N and T2 = 324 N to calculate the value of wavelength from your 
graph. 

From the Observation Table 9.1 you will observe that  changes with T.  
Mathematically, we can write  

  = f (T) 

Can you quantify this relation exactly by looking at your observations?  Probably 
you cannot. To discover the exact relationship between  and T, we write 

  μ T a  
or   

  = k1 T a (9.1) 

where k1 is constant of proportionality and a is another constant. 

Taking logarithms on both the sides, we get 

log  = log k1 + a log T. (9.2) 

Now, take a log-log graph and plot  along y-axis and T along x-axis. You will 
obtain a straight line. Its intercept on the y-axis is a measure of constant of 
proportionality and the slope of the straight line gives the value of a.  Calculate 
the slope by using two well separated points. We expect the value of a to be 
one-half.   

So we can write Eq. (9.1) as 

  = k1 T  (9.3) 

SAQ  2  –   Variation in wavelength with tension 

 

 

 

9.4   VARIATION OF WAVELENGTH WITH MASS 
PER UNIT LENGTH 

To investigate the dependence of wavelength on mass per unit length of the 
wire, take four wires of different thicknesses but of the same material. For 
each wire, you first determine the mass per unit length ( ). To do so you have 
to weigh each wire in a physical balance and measure the corresponding 
lengths. The ratio (m/ ) will give you . For more precise work, you should 
measure their diameters (d) using a micrometer screw gauge. Note its least 
count and observe whether or not there is any zero error. Measure the 
diameter at several places. In this way you can account for the 
inhomogeneities, if any, in the wire. Record your readings in Observation 

Table 9.2(a). Calculate the mass per unit length by the relation  = 
4

2d , 

where d is the mean diameter of the wire and  is the density of the material. 

If log-log graph papers 
are not available in your 
laboratory, you should 
calculate and plot  
versus T 

½, T, T 2, etc. 
The graph which gives a 
straight line will 
correspond to Eq. (9.1). 

Densities of some typical 
metals 
 

Material Density 
(  103 kg m 3) 

Iron 7.86 

Steel 8.03 

Nickel 8.912 

Copper 8.96 

Aluminium 2.698 
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Table 9.2 (a): Determination of mass per unit length of a wire. 

Least count of the micrometre screw gauge = ……cm 

Sample 
wire 

Diameter (cm) Mean 
diameter 

 (m) 

Density   
 (kg m 3) 

Mass per 
unit 

length of 
the wire 
μ(kg m 1)  

Obs. 
No. 

 

Main 
scale 

reading 

Circular 
scale 

reading 

Total 
reading 

 

A 

(i)       

(ii)    

(iii)    

B 

(i)        

(ii)    

(iii)    

C 

(i)        

(ii)    

(iii)    

D 

(i)        

(ii)    

(iii) 
 

  

 In this part of the experiment, you have to keep the tension in the wire 
constant. To do this, place a weight 2 kg, say, on the hanger. Do not change 
this weight during this part of the experiment. Now, following the procedure 
given in Sec. 9.3, determine the distance between the bridges B1 and B2 so 
that the wire vibrates in one loop with the maximum amplitude. Measure the 
distance and record it in Observation Table 9.2(b). 

Repeat this procedure for other wires, keeping the tension in the wire constant.  
Record your readings in Observation Table 9.2(b). 
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Observation Table 9.2(b): Dependence of wavelength on mass per unit 
length 

Frequency of tuning fork/electromagnet  = ………….Hz 

Tension in the wire                                  = ………….N 

Sl. 
No. 

Mass per 
unit length  

  (kg m 1) 

Length 
corresponding to 

unison  (cm) 
Mean value 

of  (cm) 
Wavelength  

 = 2 m) 

 
1. 

 (i)    

(ii)  

(iii)  

 

 

2. 

 (i)    

(ii)  

(iii) 
 

 

 
3. 

 (i)    

(ii)  

(iii)  

Does  change with ? To quantify this dependence, we write 

  = k2 b, (9.4) 

where k2 is constant of proportionality and b is another constant. 

Taking logarithms on both the sides, we get  

log  =  log k2 + b log  

If you plot  versus  on a log-log graph, you will obtain a straight line. Is the 
slope of the straight line positive or negative? A negative value signifies that as 

 increases,  decreases. The slope of the straight line gives us the value of 
the exponent b. We expect b =  0.5. (Discuss your result, if there is significant 
deviation from the quoted value, with your counsellor.) Thus we can write 

 21
2k  (9.5)    

On combining the results contained in Eqs. (9.3) and (9.5), we obtain 

 
21Tk  (9.6) 

where k is a constant of proportionality.  
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SAQ 3 –  Dependence of wavelength on mass per  
unit length 

i) How would the result of Eq. (9.6) be influenced if the wire stretched on the 
sonometer were hollow? 

ii) Suppose you have adjusted the length of the string (of steel) in unison 
with a tuning fork. Now you replace the string with a similar one of nickel. 
Will the same length of the string be in unison with the fork? Why? 

iii) From the graph obtained by plotting log  versus log T from the data 
recorded in Observation Table 9.1, calculate the intercept on y-axis. How 
is it related to mass per unit length of the wire? Compare this value with 
the value estimated from its radius and density. 

 

9.5   RELATION BETWEEN WAVELENGTH AND 
FREQUENCY 

To establish the relation between wavelength and frequency for a given wire, 
the tension in the wire is kept fixed. To vary the frequency, you would require a 
set of tuning forks of different frequencies. Obviously, an electromagnet will 
not be appropriate for this part of your investigations because it makes the 
wire to vibrate with only one frequency. 

To begin with, stretch the wire with an appropriate load, 2 kg weight, say.  
Now, out of the set of tuning forks, select the tuning fork with the lowest 
frequency. Keep the bridges B1 and B2 maximum distance apart on the 
sonometer. Now, as discussed in Sec. 9.3, keep B1 fixed and shift B2 to adjust 
the distance between the bridges so that the wire vibrates in one single loop of 
maximum amplitude. This means that the wire and the tuning fork are in 
unison. Measure the length and record it in the Observation Table 9.3. 

Keeping the tension fixed, repeat the procedure for other tuning forks.  
Measure the length each time and record it in Observation Table 9.3. 

Observation Table 9.3: Dependence of wavelength on frequency 

Tension in the string =…………N 

Sl. 
No. 

Frequency 
of the 

tuning fork 
(Hz) 

Length corresponding 
to unison (m) 

Mean 
length 

 (m) 

Wavelength   
  = 2  

(m) (i) (ii) (iii) 

 1.       

2.       

3.       

4.       

5.       
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What will be the change in frequency if the unison length of the string 
between the bridges is doubled? 

How does wavelength of stationary waves depend on the frequency of tuning 
fork (and hence fundamental frequency of the string for a fixed tension)? We 
expect the wavelength to decrease as frequency increases. To quantify this 
dependence, we express it mathematically as 

 f = k3 c, (9.7) 

where k3 is a constant of proportionality and c is some other constant.  

Now, if you plot f versus  on a log-log graph paper you should obtain a 
straight line. From the slope, you can calculate the value of c. We expect the 
value of c to be 1. What is your result? 

Also from the intercept on the y-axis, you can calculate ln k3 and hence k3.  
Compare this value of k3 with the ratio /T for this wire. Are the two values 

same? Theoretically, they should be. What does it suggest? It implies that 
frequency and wavelength of stationary waves on a string are connected by 
the relation 

 Tf 1 . (9.8) 

The dimensions of the product f  are those of velocity (ms 1). From this you 
can conclude that the velocity of stationary waves in the stretched string is 

given by v = T . 

Now you may like to attempt on SAQ. 

SAQ 4 –  Relation between wavelength and frequency 
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STUDY OF LISSAJOUS 

FIGURES USING A CATHODE 
RAY OSCILLOSCOPE 

Structure 

10.1 Introduction 
Expected Skills 

10.2 Familiarisation with a Cathode Ray  
 Oscilloscope 

10.3 A Function Generator  
  
  

10.1   INTRODUCTION 

While studying oscillations you have learnt that the motion of a body subjected to number of 
simultaneous oscillations can be explained on the basis of superposition principle. If the body 
is subjected to harmonic oscillations in two mutually perpendicular directions, the path traced 
by the resultant motion of the body gives rise to Lissajous figures. The shapes of these 
Lissajous figures are determined by the amplitude, frequency and phase relationships 
between the two mutually perpendicular oscillations applied simultaneously on the body. 

In the Physics laboratory you can observe these Lissajous figures using a Cathode Ray 
Oscilloscope (CRO in short). It is a basic but an important and versatile instrument used in all 
physics, electronics and electrical engineering laboratory.  

Using a CRO, you can measure important characteristic parameters of a signal like voltage 
amplitude, frequency, period and shape of the waveform. On a CRO screen, a luminous spot 
enables us to study the instantaneous value of input voltage. For this reason, an oscilloscope 
can also be viewed as a plotter or a recorder.  

In this experiment, you will learn the basic functions of an oscilloscope and use it to study the 
Lissajous figures by applying two sinusoidal signals to its and inputs and obtain their phase 
relationship. You will also learn about the function generator required to generate the 
sinusoidal waves. 

10.4 Determination of Phase Difference 
using Lissajous Figures Method 

 Generation of Phase Difference Signals 
 Phase Difference Calculation using 

Lissajous Figures 

10.5 Lissajous Figures of Unequal 
Frequency Sinusoidal Waves  

EXPERIMENT 10
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Expected Skills 
After performing this experiment, you should be able to: 

 understand the functions of various controls on the front panel of the 
CRO; 

 display a waveform/signal on the screen of the oscilloscope; 

 observe Lissajous figures by applying two sinusoidal waveforms; and 

 calculate the phase difference between two sinusoidal waveforms. 

The apparatus required to perform this experiment are given below. 

 
 
 
 
10.2 FAMILIARISATION WITH A CATHODE RAY 

OSCILLOSCOPE 
Before using a CRO, you must get familiar with its working and the functions of 
various control knobs on its front panel. CRO is essentially an assembly of a 
cathode ray tube (CRT) and some specific electronic circuits. CRT is the major 
component of a CRO. It produces a sharply focussed high speed electron 
beam, which can be moved on the screen using appropriate voltages for 
deflection. CRO front panel consists of CRT screen and some knobs to control 
its function. We have listed the functions of these knobs at the end of this 
section.   

Fig.10.1 shows a schematic diagram of a CRT. It is an evacuated glass 
envelop with the following essential components: 

 an electron gun; 

 deflection plates; and 

 a fluorescent display screen. 

The electron gun has following parts: 

 a heater or a cathode that emits electrons; 

 a control grid to regulate the amount of current; 

 a focusing electrode to produce pencil-like electron beam; and 

 accelerating and pre-accelerating electrodes to provide high velocity to 
electrons, which, on striking the screen, may cause secondary emission.  

The deflection assembly comprises of a set of vertical and horizontal plates 
separated at a distance. The CRT screen has a fluorescent material such as 
ZnS which emits light when electron strikes on it.  In a CRO, the electron beam 
emitted by the electron gun undergoes deflection before striking the screen. 

Apparatus required 

Dual beam/trace CRO, 2 function generators, resistors (1 k ), capacitor 
(0.5 F), resistance box (100   10 k ), bread board, connecting wires, 
tracing paper.  
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The deflection assembly comprises of a set of vertical and horizontal plates 
separated at a distance. The CRT screen has a fluorescent material such as 
ZnS which emits light when electron strikes on it.  In a CRO, the electron beam 
emitted by the electron gun undergoes deflection before striking the screen. 

 

Fig. 10.1: Schematic of a CRT 

Since electrons are charged particles, deflection of electron beam can be 
effected either electrostatically or magnetically.  In most of the oscilloscopes, 
the deflection of the beam is generally caused electrostatically.  You may note 
that the potential applied across the horizontally placed  plates 1 and 2 
would deflect the beam vertically, whereas a potential applied to vertically 
arranged  plates  and  would deflect the beam horizontally.  Further, the 
magnitude of the deflection is proportional to the voltage applied across the 
deflection plates. In a typical CRT with display screen of about 10 cm, under 
ordinary conditions, a deflection of about 2.5 cm could be obtained for a 
potential of about 100V. In the real situation, since the amplitude of  the signal 
we measure with a CRO is well below 100V, we need to amplify the signal in 
order to cause appropriate deflection of the beam on the CRT screen. 
Therefore, deflection amplifiers are provided for each pair of deflection  
plates. 

Without going into the details of internal circuits in the CRO, it is sufficient here 
for you to remember that for an oscilloscope to display the variation of an 
electrical signal in the vertical direction as a function of time, a voltage 
varying linearly with time such as a saw-tooth wave called sweep will 
have to be applied on the horizontal deflection plates   

To provide a more stable trace on the oscilloscope, an additional feature in the 
form of a is provided. While using a trigger, the CRO pauses in each 
cycle when the sweep reaches extreme right side of the screen and retraces 
back to the left hand side of the screen. Then it waits for a specified event 
before starting the next trace. The trigger event is usually the input waveform 
reaching some user-specified threshold voltage in a specified direction (going 
positive or negative). 

For proper operation of an oscilloscope, all the controls are mounted on the 
front panel. Fig.10.2 depicts the location of various controls on the front panel 
of a typical general purpose dual beam oscilloscope. In such a CRO, two 
signals can be viewed simultaneously on two separate channels. We may add 
here that the location of different controls can vary from one manufacturer to 
another.   
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Fig. 10.2: Schematic of front panel of a dual beam general purpose CRO. 

Table 10.1 describes the function of each control shown in Fig. 10.2. 

Table 10.1: Controls on CRO front panel 

No. Control Function 

1. Power Turns mains power on/off. 

2.  5 When pressed gives five times magnification of the signal 
amplitude. 

3. It cuts off the time base fed to the horizontal plates when 
pressed in and allows access to the horizontal signal fed 
through CH-II.  It is used for -  display. 

4. CH-I/CH-II/     
Trig I/Trig II 

It selects and triggers CH-I when it is out.  On pressing it 
in, it selects and triggers CH-II. 

5. Mono/Dual A switch to select the single/dual beam operation. 

6. Alt/Chop/Add It selects alternate or chopped in DUAL mode.  If mono is 
selected, it enables addition or subtraction of signals on 
two channels. 

7. Time/Div. It selects time base speeds. 

8. AUTO/NORM AUTO mode enables trace when no signal is fed at the 
trigger input. In NORM position, the trigger level can be 
varied using LEVEL control.  

9. LEVEL It allows setting of the trigger level between peak-to-peak 
amplitude of the input signal. 

10. TRIG IN A socket that is used to feed external trigger signal in EXT 
mode. 

11. EXT Switch that allows External triggering signal to be fed from 
the socket marked TRIG IN. 

12. -POS This knob controls the horizontal position of the beam 
trace. 
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No. Control Function 

13. VAR Controls the time base speed in between two steps of 
TIME/DIV switch. 

14. +/- This switch selects the slope of triggering. 

15. INV CH.II This switch when pressed inverts the signal at CH.II. 

16. INTENS It controls the trace brightness. 

17. FOCUS It controls the sharpness of the trace. 

18. DC/AC/GND Coupling switch for each channel. In AC mode, the signal 
in coupled through 0.1 F capacitor. 

19. CH-I ( ) and 
CH-II ( )  

BNC connectors serve as -input connections for CH-I 
and CH-II.  CH-II input connector also serves as 
Horizontal external signal on using -  control.  

20. Volts/Div A switch to select the sensitivity of each channel. 

21. -Pos I and II Controls for vertical deflection of trace for each channel. 

You must carefully read and understand the function of each control. Then, 
you should see for yourself how some of the basic controls on the front panel 
affect a given trace.  For this, first switch  the oscilloscope by power switch 
and obtain a horizontal line on the CRO screen (In case of a dual beam / trace 
oscilloscope, you should obtain two straight lines.) You need not make any 
connections to the vertical input sections at this stage. Now adjust the controls 
listed in Table 10.2 and record your observations. 

Table 10.2: Functions of some basic controls on CRO front panel 

Control Observed Effect 

Intensity 

Focus 

-position 

-position 

 

 

The display area (front panel) of the CRT is marked with a centimeter-scale 
grid and each centimeter is called division (Div). Each division is further 
divided into 5 parts; hence the smallest length that can be measured on the 
screen is 2 mm.  For the controls of time base (Time/Div) and voltage 
sensitivity (Volts/Div), the selected range value corresponds to 1 cm on the 
display area. [For example,  0.5 ms/div means on the time (horizontal) axis,  
0.5 milliseconds are mapped over 1 cm length and 1 V/div means on vertical 
axis  1 volt amplitude corresponds to  1 cm height on the y-scale].  
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After getting familiarised with the CRO, now we will discuss in brief about 
another apparatus called a function generator, which you will be using in this 
experiment. 

10.3   A FUNCTION GENERATOR 

You can use an oscilloscope to measure both dc-voltage and time varying 
voltage. To generate time varying voltage, you need a general purpose 
function generator, which can generate sinusoidal, triangular and square 
waveforms with adjustable frequency and amplitude. The function generators 
are available in either analogue or digital versions. Fig. 10.3 shows the front 
panel of a typical analogue function generator. 

  
 
 
 
 
 

 

 

Fig. 10.3: Front panel of a typical analogue function generator. 

 A function generator usually has control knobs listed in Table 10.3. 

Table 10.3: Controls of a typical function generator 

No. Control Function 

1. 
WAVEFORM 
(OR FUNCTION) 
SELECTOR 

Type of waveform/signal: a square wave, 
sinusoidal, triangular or saw-tooth waveform 
selection switch 

2. RANGE (Hz) 
Frequency range selection switch                         
(10-100-1k-10k-100k-1M) Hz 

3. FREQUENCY Frequency adjustment knob 

4. AMPLITUDE Amplitude adjustment knob 

5. OFF SET DC voltage can be added to the ac signal 

6. OUTPUT BNC terminal giving out generator signal 
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10.4 DETERMINATION OF PHASE DIFFERENCE 
USING LISSAJOUS FIGURES METHOD 

You can use an oscilloscope to determine the phase difference between two 
signals of same frequency by Lissajous pattern method. Let us now learn to 
obtain signals with phase difference using simple electronic circuits. 

 
 
Fig. 10.4 shows two sinusoidal waveforms, which have identical time period, 
that is, they are of equal frequency. However, you must have noticed that they 
cross the mean position at different times. This time difference multiplied by 
angular frequency is called the phase difference between the two waves.  

Here we choose one signal as a reference, that is, with zero-phase angle. 
Therefore, the signal being compared is said to be leading by an angle  if it is 
to the left of the reference signal and lagging if it is to the right of the reference 
signal. The lead indicates positive value of phase while lag indicates negative 
value of phase. 

In order to obtain two sinusoidal waves of equal frequency but differing in 
phase, you should use the circuit shown in Fig.10.5. It is an -  circuit, and 
you may recall from your +2 physics course that the current  at any instant 
would lead the applied voltage .  Here the voltage  is in phase with  and 
the voltage across the capacitor  will lag the voltage . Therefore, we obtain 
two sinusoidal signals with a phase difference. 

10.4.2   Phase Difference Calculation using Lissajous 
Figures 

The phase difference between two sinusoidal signals can be determined using 
Lissajous figure obtained on the CRO screen by applying the two signals to 
two pairs of deflection plates. This method is called the -  phase 
measurement.  

Now let us discuss the formation of Lissajous figure on the CRO screen.  
Suppose that two sinusoidal signals having the same frequency but different 
phases are superimposed. If the phase difference is , these may be written 
as  

1 =   sin  

and 2  =   sin (  + ). 

You may appy the voltage 1 to the vertical deflection plate and 2 to the 
horizontal deflection plate. You may recall from Unit 17 of the theory course on 
Mechanics, that depending on the value of phase difference, , the resultant 
pattern will be either an ellipse or a straight line. In this experiment, you have 
to ensure that you obtain an ellipse on the CRO screen, as shown in Fig. 10.6. 

At  = 0, you have 2 =  sin  and therefore sin  = 2 /   i.e.  = sin-1( 2/ ).  
Note that  corresponds to the maximum value of 2. 

Fig. 10.4: Phase 
difference between two 
sinusoidal signals. 

Fig. 10.5: Phase shifting 
circuit. 

10.4.1   Generation of Phase Difference Signals 

Fig. 10.6: Phase 
measurement using 
Lissajous pattern.
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Fig.10.7 illustrates two possible patterns on the screen of a CRO.  These 
figures depict possible phase difference between the two sinusoidal signals. 

 

 

 

 

Fig. 10.7: Phase measurements. 

Procedure 

1. Construct the network given in Fig. 10.8 to obtain two sinusoidal signals of 
same frequency, with a phase difference between them.  

2. Choose the  mode of CRO and apply the two signals to vertical and 
horizontal ( and x) inputs of the CRO as shown in the circuit. This will 
result into an elliptical figure on the CRO screen. 

 

 

 

 

 

Fig. 10.8: Circuit for measurement of phase difference between two sine waves. 

3. Trace the ellipse on the tracing paper and then paste it on a graph paper 
after carefully centring.  

4. Measure 2 2 and 2  and calculate the value of phase as shown in         
Fig. 10.7.  

5. Now set the value of  by varying  with the help of resistance box, but 
keeping 0 = 1 k .

Record the value of , 2 and  for each case in Observation Table 
10.4.  

 Now calculate the value of the phase angle .  

8. Take readings for at least 3 different values of .   

You have learnt in  
Unit 17 of the theory 
course on Mechanics that 
the ellipse present in 
second and fourth 
quadrant of the  plane 
corresponds to the phase 
angle ( -sin 1( 2/ )).   

1k 
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Observation Table 10.4: Phase difference from Lissajous figures 

Constant resistance, 0 = 1000  

Resistance chosen 
in Resistance Box  

( ) 

= 0 +  
( ) 2  = sin 1 (v2/ ) 

0 1000    

1000 2000    

2000 3000    

After studying the Lissajous figures for same frequency sinusoidal waves, now 
you will study the figures generated by two sinusoidal signals of unequal 
frequencies. 

10.5 LISSAJOUS FIGURES OF UNEQUAL 
FREQUENCY SINUSOIDAL WAVES 

You have learnt in the Mechanics course that the Lissajous figures can also be 
observed in case of two unequal frequency waves when they are applied in 
perpendicular direction. Let  be the frequency of the sine wave given to the 
-input and  be the frequency given to the -input. Let the relation between 
 and  be ,  (where and  are integers), then a Lissajous 

figure can be observed on the CRO screen such that it cuts -axis at maximum 
-times (or its multiples) and -axis at maximum times (or its multiple). An 

example of this is shown in Fig. 10.9(a and b).  

 

  

 

 

 
(a)                                                   (b) 

Fig. 10.9: Lissajous figures corresponding to 2  = 3 . 

In Fig. 10.9a, the Lissajous figure cuts the -axis at maximum three points 
while the -axis at maximum two points. That is in the same time period, there 
are three vibrations parallel to -axis and two vibrations parallel to -axis.  
Hence, the frequency relation between  and  is 2  = 3 . Now, in         
Fig. 10.9b, the figure cuts -axis at maximum 6 points and -axis at maximum 
4 points. Again the frequency relation is 4  = 6  i.e. 2  = 3 . 

You can observe various patterns by changing the ratio of frequencies of 
sinusoidal wave given to - and -axis. 
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To perform this experiment, you will need one dual trace oscilloscope with -  
mode of operation and two function generators. Now perform the experiment 
as described in the following steps: 

1. Connect the two function generator outputs to channel-  and channel-  of 
the CRO. Select -  mode of CRO operation. Select sinusoidal waveforms 
on two function generators and set their frequencies. 

2. Now, by adjusting the frequencies of the two function generators in various 
proportions you will be able to observe different Lissajous figures. Some 
examples of these patterns are given in Fig. 10.10. 

3. Obtain the patterns on the screen and trace them on a tracing paper. 

4 Write down the frequencies applied to  and  axes on this traced figure. 
Confirm that the :  ratio seen on the figure matches with the 
corresponding pattern in Fig. 10.10.  

Patterns Frequency 
to x-channel 

Frequency 
to 

 y-channel 

Ratio of 
x : y 

   

4000 Hz 2000 Hz 2:1 

   

4000 Hz 3000 Hz 4:3 

   

2000 Hz 2000 Hz 1:1 

   

2000 Hz 3000 Hz 2:3 

   

2000 Hz 4000 Hz 1:2 

   

1000 Hz 3000 Hz 1:3 

   

1000 Hz 4000 Hz 1:4 

Fig. 10.10: Lissajous figures corresponding to various ratios of  and y. 

 




