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BLOCK INTRODUCTION 
 
This block focuses on Advanced trees, Graphs and Searching. 
 
The unit on  advanced trees is the extension of some of the concepts that are covered 
in the unit on trees. In this unit, we shall study about Binary search trees (BST) , 
Graphs and Searching. The feature of BST is that all the nodes which hold values that 
are less than the value of root will be in the left subtree of the root. All the nodes 
which hold values that are larger than the value of the root will be in the right subtree 
of the root.  The same applies to every node in the BST when that node is treated as a 
root node of the corresponding subtrees. In general, AVL trees are height balanced 
trees. The difference of heights of the subtrees of any node in the AVL tree is of 
atmost 1. Finally, in this unit, we discuss B-trees. One of the features of a B-tree is 
that there will be more than one element residing in each node of the B-tree. 
Advanced trees are discussed in unit-7. 
 
Graphs is a very important topic in any course on Data Structures. In this unit, we 
discuss both Direct graphs and Undirected Graphs. The major discussions in our unit 
focus on the issues of finding the minimum cost spanning trees, finding the minimum 
path between two different nodes of the graph. We shall discuss Kruskal’s and 
Dijkstra’s algorithms in this unit.  We shall also focus on the relation  between a tree 
and a graph. In detail we shall discuss Graphs in unit-8. 
 
 
The final unit in this block focuses on Searching.  We  focus on Linear search and 
Binary search. The advantages and disadvantages of both these techniques are 
discussed. Also, their complexities are mentioned. The applications of both the search 
techniques were also mentioned. It is very important to do a bit of work before 
deciding on the search technique to be employed. In case, a wrong search technique is 
employed it may lead to the increase of time and space complexities. The topic 
Searching is discussed in unit-9. 
 
There are programs in this block. Students are advised to simulate the programs by 
hand before trying to execute them on the machine. All programs may not readily 
execute on the machine. The programs were written in such a way that the older 
versions of compilers will be able to execute them as the newer versions from third 
parties will have some variance in the syntax. It is very important to simulate every 
program by hand, make necessary modifications and then execute the program. It is 
always suggested that students should write programs on their own and should not 
copy any portion of the program that is existent in the block. You are also hereby 
advised to refer to as many books as possible on the related topics to increase your 
knowledge.  
 
This block consists of  three units and is organised as follows: 
 
Unit-7 deals with Advanced trees. Binary search trees, AVL trees and B-trees are 
discussed in this unit. Their applications are also discussed. 
 
Unit-8 deals with Graphs. Both Direct graphs and Undirect graphs are discussed in 
this unit. Various algorithms are also covered.  
 
Unit-9  deals with Searching. Both Linear search and Binary search are discussed in 
this unit.  
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7.0 INTRODUCTION 

 
Linked list representations have great advantages of flexibility over the contiguous 
representation of data structures. But, they have few disadvantages also. Data 
structures organised as trees have a wide range of advantages in various applications 
and it is best suited for the problems related to information retrieval. 
These data structures allow the searching, insertion and deletion of node in the 
ordered list to be achieved in the minimum amount of time. 
 
The data structures that we discuss primarily in this unit  are Binary Search Trees, 
AVL trees and B-Trees. We cover only fundamentals of these data structures in this 
unit. Some of these trees are special cases of other trees and Trees are having a large 
number of applications in real life. 
 

7.1 OBJECTIVES 
  
After going through this unit, you should be able to  

 
• know the fundamentals of Binary Search trees; 

• perform different operations on the Binary Search Trees; 

• understand the concept of AVL trees; 

• understand the concept of B-trees, and 

• perform various operations on B-trees. 

7.2   BINARY SEARCH TREES 

 
A Binary Search Tree is a binary tree that is either empty or a node containing a key 
value, left child and right child. 
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 Graph Algorithms and 

Searching Techniques By analysing the above definition, we note that BST comes in two variants namely 
empty BST and non-empty BST. 
 
The empty BST has no further structure, while the non-empty BST has three 
components. 
 
The non-empty BST satisfies the following conditions: 
 

a) The key in the left child of a node (if exists) is less than the key in its parent 
node. 

b) The key in the right child of a node (if exists) is greater than the key in its 
parent node. 

c) The left and right subtrees of the root are again binary search trees. 
 
The following are some of the operations that can be performed on Binary search 
trees: 
 

• Creation of an empty tree 

• Traversing the BST 

• Counting internal nodes (non-leaf nodes) 

• Counting external nodes (leaf nodes) 

• Counting total number of nodes 

• Finding the height of tree 

• Insertion of a new node 

• Searching for an element  

• Finding smallest element 

• Finding largest element 

• Deletion of a node. 

 
7.2.1 Traversing a Binary Search Tree 
 
Binary Search Tree allows three types of traversals through its nodes.  They are as 
follow:  
 

1. Pre Order Traversal 
2. In Order Traversal 
3. Post Order Traversal 

 
 In Pre Order Traversal, we perform the following three operations: 
 

1. Visit the node 
2. Traverse the left subtree in preorder 
3. Traverse the right subtree in preorder 
 

 
In Order Traversal,we perform the following three operations: 
 

1. Traverse the left subtree in inorder 
2. Visit the root 
3. Traverse the right subtree in inorder. 
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Advanced Trees In Post Order Traversal, we perform the following three operations: 
 

1. Traverse the left subtree in postorder 
2. Traverse the right subtree in postorder 
3. Visit the root 

 
   Consider the BST of Figure 7.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

G L P 

M
U 

S 

F 

J 

K 

Figure 7.1: A Binary Search Tree(BST) 
 
The following are the results of  traversing the BSTof Figure 7.1: 
 
Preorder : K J F G S M L P U  
Inorder   : F G J K L M P S U 
Postorder: G F J L P M U S K 
 
7.2.2   Insertion of a node into a Binary Search Tree 
 
A binary search tree is constructed by the repeated insertion of new nodes into a 
binary tree structure. 
 

Insertion must maintain the order of the tree. The value to the left of a given node 
must be less than that node and value to the right must be greater. 
 

In inserting a new node, the following two tasks are performed : 
 

• Tree is searched to determine where the node is to be inserted. 
• On completion of search, the node is inserted into the tree 

 

Example: Consider  the BST of Figure 7.2 After insertion of a new node consisting 
of value 5, the BST of Figure 7.3 results. 
 

15

3 

7 

10 
 
 
 
 
 
 
 
 
 
 

Figure 7.2:  A non-empty 
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7.2.3    Deletion of a node from a Binary Search Tree 

Figure 7.3:  Figure 7.2 after insertion of 5 

 
The algorithm to delete a node with key from a binary search tree is not simple where 
as many cases needs to be considered. 
 

• If the node to be deleted has no sons, then it may be deleted without further 
adjustment to the tree. 

 

• If the node to be deleted has only one subtree, then its only son can be moved 
up to take its place. 

 

• The node p to be deleted has two subtrees, then its inorder successor s must 
take its place.  The inorder successor cannot have a left subtree.  Thus, the 
right son of s can be moved up to take the place of s. 

 
Example: Consider the following cases in which node 5 needs to be deleted. 
 

1. The node to be deleted has no children. 
 

15

10 
 
     

 

157 

10

 
 
 
 
 
 
        2.       The node has one child 
 

7 

10

155 

10

7 

15

 
 
 
 
 
 
 
 
 
 
 
 
 
 
       3.  The node to be deleted has two children. This case is complex. The order 

of the binary tree must be kept intact.   
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Advanced Trees  Check Your Progress 1 
 
1) What are the different ways of traversing a Binary Search Tree? 

…………………………………………………………………………………
………………………………………………………………………………… 
 

2) What are the major features of a Binary Search Tree? 
…………………………………………………………………………………
………………………………………………………………………………… 

 

7.3 AVL TREES 

 
An AVL tree is a binary search tree which has the following properties: 
 

• The sub-tree of every node differs in height by at most one. 
• Every sub tree is an AVL tree. 

 
Figure 7.4 depicts an AVL tree. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.4 : Balance requirement for an AVL tree: the left and right subtree differ by at 
most one in height 

 
AVL stands for the names of G.M. Adelson – Velskii and E.M. Landis, two Russian 
mathematicians, who came up with this method of keeping the tree balanced. 
 
An AVL tree is a binary search tree which has the balance property and in addition to 
its key, each node stores an extra piece of information: the current balance of its 
subtree.  The three possibilities are: 
 

 Left – HIGH (balance factor -1) 
 The left child has a height that is greater than the right child by 1. 
 

 BALANCED (balance factor 0) 
 Both children have the same height 
 

 RIGHT – HIGH (balance factor +1) 
 The right child has a height that is greater by 1. 
 
An AVL tree which remains balanced guarantees O(log n) search time, even in 
the worst case. Here, n is the number of nodes. The AVL data structure achieves 
this property by placing restrictions on the difference in heights between the sub-
trees of a given node and rebalancing the tree even if it violates these restrictions. 
 
7.3.1  Insertion of a node into an AVL tree 
 
Nodes are initially inserted into an AVL tree in the same manner as an ordinary 
binary search tree. 
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However, the insertion algorithm for an AVL tree travels back along the path it 
took to find the point of insertion and checks the balance at each node on the path. 

Graph Algorithms and 
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If a node is found that is unbalanced (if it has a balance factor of either -2 or +2) 
then rotation is performed, based on the inserted nodes position relative to the 
node being examined (the unbalanced node). 
 
7.3.2  Deletion of a node from an AVL tree 
 
The deletion algorithm for AVL trees is a little more complex as there are several 
extra steps involved in the deletion of a node.  If the node is not a leaf node, then 
it has at least one child.  Then the node must be swapped with either its in-order 
successor or predecessor.  Once the node has been swapped, we can delete it. 
 
If a deletion node was originally a leaf node, then it can simply be removed. 
 
As done in insertion, we traverse back up the path to the root node, checking the 
balance of all nodes along the path. If unbalanced, then the respective node is 
found and an appropriate rotation is performed to balance that node. 
 
7.3.3  AVL tree rotations 
 
AVL trees and the nodes it contains must meet strict balance requirements to 
maintain O(log n) search time. These balance restrictions are maintained using 
various rotation functions. 
 
The four possible rotations that can be performed on an unbalanced AVL tree are 
given below.  The before and after status of an AVL tree requiring the rotation are 
shown (refer to Figures 7.5, 7.6, 7.7 and 7.8). 
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 Figure 7.5: LL Rotation  
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Figure 7.6: RR Rotation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.7: LR Rotation 
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Figure 7.8: RL Rotation 
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Example: ( Single rotation in AVL tree, when a new node is inserted into the 
AVL tree (LL Rotation)) (refer to Figure 7.9). 
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Figure 7.9: LL Rotation 

 

The rectangles marked A, B and C are trees of equal height.  The shaded rectangle 
stands for a new insertion in the tree C.  Before the insertion, the tree was balanced, 
for the right child was taller then the left child by one. 
 

The balance was broken when we inserted a node into the right child of 7, since the 
difference in height became 7. 
 

To fix the balance we make 8 the new root, make c the right child move the old root 
(7) down to the left together with its left subtree A and finally move subtree B across 
and make it the new right child of 7. 
 

Example: (Double left rotation when a new node is inserted into the AVL tree (RL 
rotation)) (refer to Figure 7.10 ( a),(b),(c)). 
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Figure 7.10: Double left rotation when a new node is inserted into the AVL tree 
 
A node was inserted into the subtree C, making the tree off balance by 2 at the root.  
We first make a right rotation around the node 9, placing the C subtree into the left 
child of 9.  
 
Then a left rotation around the root brings node 9 (together with its children) up a 
level and subtree A is pushed down a level (together with node 7).  As a result we get 
correct AVL tree equal balance. 
 
An AVL tree can be represented by the following structure:  
struct avl  { 
 struct node *left; 
 int info; 
 int bf; 
 struct node *right; 
}; 
 
bf is the balance factor, info is the value in the node. 
 
7.3.4  Applications of AVL Trees 
 
AVL trees are applied in the following situations:  
 

• There are few insertion and deletion operations 
• Short search time is needed 
• Input data is sorted or nearly sorted 

 
AVL tree structures can be used in situations which require fast searching. But, the 
large cost of rebalancing may limit the usefulness. 
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Consider the following: Graph Algorithms and 

Searching Techniques  
1. A classic problem in computer science is how to store information 

dynamically so as to allow for quick look up.  This searching problem arises 
often in dictionaries, telephone directory, symbol tables for compilers and 
while storing business records etc.  The records are stored in a balanced 
binary tree, based on the keys (alphabetical or numerical) order.  The 
balanced nature of the tree limits its height to O (log n), where n is the number 
of inserted records. 

 
2. AVL trees are very fast on searches and replacements. But, have a moderately 

high cost for addition and deletion.  If application does a lot more searches 
and replacements than it does addition and deletions, the balanced (AVL) 
binary tree is a good choice for a data structure. 

 
3. AVL tree also has applications in file systems.  

 
 Check Your Progress 2 

 
1) Define the structure of an AVL tree. 

…………………………………………………………………………
………………………………………………………………………… 
 

7.4 B – TREES 
 
B-trees are  special m–ary balanced trees used in databases because their structure 
allows records to be inserted, deleted and retrieved with guaranteed worst case 
performance. 
 
A B-Tree is a specialised multiway tree.  In a B-Tree each node may contain a large 
number of keys.  The number of subtrees of each node may also be large. A B-Tree is 
designed to branch out in this large number of directions and to contain a lot of keys 
in each node so that height of the tree is relatively small. 
 
This means that only a small number of nodes must be read from disk to retrieve an 
item. 
 
A B-Tree of order m is multiway search tree of order m such that  
 

• All leaves are on the bottom level 
• All internal nodes (except root node) have atleast m/2 (non empty) children 
• The root node can have as few as 2 children if it is an internal node and can 

have no children if the root node is a leaf node 
• Each leaf node must contain atleast (m/2) – 1 keys. 

 
The following is the structure for a B-tree : 
 
 struct btree 
 
 { int count;  // number of keys stored in the current node 
  item_type key[3];               // array to hold 3 keys 
  long branch [4];               // array of fake pointers (records numbers) 
 }; 
  
Figure 7.11 depicts a B-tree of order 5.  
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       E              H   P          T        X 
 
 

   
 
 
 
 
 

 I     K      L F         G N     O Q     S V     W B           D  Y      Z 
 
 
 

Figure 7.11: A B-tree of order 5 
 
7.4.1  Operations on B-Trees 
 
The following are various operations that can  be performed on B-Trees: 
 

• Search 
• Create 
• Insert 

 
B-Tree strives to minimize disk access and the nodes are usually stored on disk 
 
All the nodes are assumed to be stored in secondary storage rather than primary 
storage. All references to a given node are preceded by a read operation.  Similarly, 
once a node is modified and it is no longer needed, it must be written out to secondary 
storage with write operation. 
 
The following is the algorithm for searching a B-tree: 
 
B-Tree Search (x, k) 
 
 i < - 1 
 while i < = n [x] and k > keyi[x] 
  do i ← i + 1  
 if i < = n [x] and k = key1 [x] 
  then return (x, i) 
 if leaf [x] 
  then return NIL 
 else Disk – Read (ci[x]) 
  return B – Tree Search (Ci[x], k) 
 
The search operation is similar to binary tree.  Instead of choosing between a left and 
right child as in binary tree, a B-tree search must make an n-way choice. 
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The correct child is chosen by performing a linear search of the values in the node.  
After finding the value greater than or equal to desired value, the child pointer to the 
immediate left to that value is followed. 

Graph Algorithms and 
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The exact  running time of search operation depends upon the height of the tree.  
 

The following is the algorithm for the creation of a B-tree: 
 

B-Tree Create (T) 
 

 x ← Allocate-Node ( ) 
 Leaf [x] ← True 
 n [x] ← 0 
 Disk-write (x) 
 root [T] ← x 
 

The above mentioned algorithm creates an empty B-tree by allocating a new root that 
has no keys and is a leaf node.   
 

The following is the algorithm for insertion into a B-tree: 
 

B-Tree Insert (T,K) 
 

 r ← root (T) 
 if n[r] = 2t – 1 
  then S ← Allocate-Node ( )  
   root[T] ← S 
   leaf [S] ← FALSE 
   n[S] ← 0 
   C1 ← r 
   B–Tree-Split-Child (s, I, r) 
   B–Tree-Insert-Non full (s, k) 
                 else 
   B – Tree-Insert-Non full (r, k) 
 

To perform an insertion on B-tree, the appropriate node for the key must be located.  
Next, the key must be inserted into the node. 
 

If the node is not full prior to the insertion, then no special action is required. 
 
If node is full, then the node must be split to make room for the new key.  Since 
splitting the node results in moving one key to the parent node, the parent node must 
not be full. Else, another split operation is required. 
 
This process may repeat all the way up to the root and may require splitting the root 
node. 
 

Example:Insertion of a key 33 into a B-Tree (w/split) (refer to Figure 7.12) 
 
 
Step 1: Search first node for key nearest to 33. Key 30 was found. 
 
 
 
 
 
 
 
 
 
 
 

32      35     36       41     53 21          27 12     15     17       192          4          6 

10              20             30
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Advanced Trees Step 2: Node pointed by key 30, is searched for inserting 33. Node is split and 36 is 
shifted upwards. 

 
 
 
 
 
 
 

32    35              41      53     36 21           2712     15     17       19 2          4          6 

10              20              30

 
Step 3: Key 33 is inserted between 32 and 35. 
 
 
 
 
 
 
 

41              53 32             35     33 21       2712     15     17       19 2         4          6 

10         20           30            36  

 
Figure 7.12 : A B-tree 

 
Deletion of a key from B-tree is possible, but care must be taken to ensure that the 
properties of b-tree are maintained if the deletion reduces the number of keys in a 
node below the minimum degree of tree, this violation must be connected by 
combining several nodes and possibly reducing the height if the tree.  If the key has 
children, the children must be rearranged. 
 
Example (Searching of a B – Tree for key 21(refer to Figure 7.13)) 
 
Step 1: Search for key 21 in first node. 21 is between 20 and 30. 
 
 
 
 
 
 
 
 
 
 
 

32      35     36       41     53 21          27 12     15     17       19 2          4          6 

10              20             30

 
Step2 : Searching is conducted on the nodes connected by 30. 
 

32      35     36       41     53            27    2112     15     17       19 2          4          6 

10              20             30   
 
 
 
 
 
 
 
 
 

Figure 7.13 : A B-tree 
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7.4.2  Applications of B-trees Graph Algorithms and 

Searching Techniques  
A database is a collection of data organised in a fashion that facilitates updation, 
retrieval and management of the data. Searching an unindexed  database containing n 
keys will have a worst case running time of O (n). If the same data is indexed with a 
b-tree, then the same search operation will run in O(log n) time.  Indexing large 
amounts of data can significantly improve search performance. 
 

 Check Your Progress 3 
 
1) Create a B – Tree of order 5  for the following: 
 CNGAHEKQMSWLTZDPRXYS 
          ………………………………………………………………………………….... 
          …………………………………………………………………………………… 
 

2)   Define a  multiway tree of order m. 
          …………………………………………………………………………………. 
          …………………………………………………………………………………… 
 

7.5 SUMMARY 
 
In this unit, we discussed Binary Search Trees, AVL trees and B-trees. 
 
The striking feature of Binary Search Trees is that all the elements of the left subtree 
of the root will be less than those of the right subtree. The same rule is applicable for 
all the subtrees in a BST. An AVL tree is a Height balanced tree. The heights of   
left and right subtrees of root of an AVL tree differ by 1. The same rule is applicable 
for all the subtrees of the AVL tree. A B-tree is a m-ary binary tree. There can be 
multiple elements in each node of a B-tree. B-trees are used extensively to insert , 
delete and retrieve records from the databases. 
 

7.6   SOLUTIONS/ANSWERS 
 
Check Your Progress 1 
 
1) preorder, postorder and inorder 
2) The major feature of a Binary Search Tree is that all the elements whose values 

is less than the root reside in the nodes of left subtree of the root and all the 
elements whose values are larger than the root reside in the nodes of right 
subtree of the root. The same rule is applicable to all the left and right subtrees 
of a BST. 

 
Check Your Progress 2 
 
1) The following is the structure of an AVL tree: 

 
struct avl  { 
 struct node *left; 
 int info; 
 int bf; 
 struct node *right; 
}; 
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Advanced Trees Check Your Progress 3 
 
1) 
 

Z Y X WSRPNL K H

 

F E 

 

C A 

TQ

   

G D 

 

M 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2) A multiway tree of order n is an ordered tree where each node has at most m 

children.  For each node, if k is the actual no. of children in the node, then k-1 is the 
number of keys in the node.  If the keys and subtrees are arranged in the fashion of a 
search tree, then this is multiway search tree of order m. 

 

7.7 FURTHER READINGS 
 
1. Data Structures using C and C ++ by Yedidyah Hangsam, Moshe J. 

Augenstein and Aaron M. Tanenbaum, PHI Publications. 
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8.0 INTRODUCTION  

In this unit, we will discuss a data structure called Graph. In fact, graph is a general 
tree with no parent-child relationship. Graphs have many applications in computer 
science and other fields of science. In general, graphs represent a relatively less 
restrictive relationship between the data items. We shall discuss about both undirected 
graphs and directed graphs. The unit also includes information on different algorithms 
which are based on graphs. 
 

8.1 OBJECTIVES  
 
After going through this unit, you should be able to 
 
• know about graphs and related terminologies; 

• know about directed and undirected graphs along with their representations; 

• know different shortest path algorithms; 

• construct minimum cost spanning trees; 

• apply depth first search and breadth first search algorithms, and 

• finding strongly connected components of a graph. 

 

8.2 DEFINITIONS 
 
A graph G  may be defined as a finite set V of vertices and a set E of edges (pair of 
connected vertices).  The notation used is as follows: 
 
Graph G = (V, E) 
Consider the graph of Figure 8.1. 
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Graphs The set of vertices for the graph is V = {1, 2, 3, 4, 5}. 

The set of edges for the graph is E = {(1,2), (1,5), (1,3), (5,4), (4,3), (2,3) }. 
 
The elements of E are always a pair of elements. 
 

 

 2 

3 
1 

4 5 

                     Figure 8.1: A graph 
 
It may be noted that unlike nodes of a tree, graph has a very limited relationship 
between the nodes (vertices). There is no direct relationship between the vertices 1 
and 4  although they are connected through 3. 
 
Directed graph and Undirected graph: If every edge (a,b) in a graph is marked by  a 
direction from a to b, then we call it a Directed graph (digraph). On the other hand, if 
directions are not marked on the edges, then the graph is called an Undirected graph. 
 
In a Directed graph, the edges (1,5) and (5,1) represent two different edges whereas in 
an Undirected graph, (1,5) and (5,1) represent the same edge. Graphs are used in 
various types of modeling. For example, graphs can be used to represent connecting 
roads between cities. 
 
Graph terminologies : 
 
Adjacent vertices: Two vertices a and b are said to be adjacent if there is an edge 
connecting a and b. For example, in Figure 8.1, vertices 5 and 4 are adjacent. 
 
Path: A path is defined as a sequence of distinct vertices, in which each vertex is 
adjacent to the next. For example, the path from 1 to 4 can be defined as a sequence of 
adjacent vertices (1,5), (5,4). 
 
A path, p, of length, k, through a graph is a sequence of connected vertices:  

 
p = <v0,v1,...,vk> 

Cycle : A graph contains cycles if there is a path of non-zero length through the graph,                 
p = <v0,v1,...,vk> such that v0 = vk. 
 
Edge weight : It is the cost associated with edge. 
 
Loop: It is an edge of the form (v,v). 
 
Path length : It is the number of edges on the path.  
 
Simple path : It is the set of all distinct vertices on a path (except possibly first and 
last). 

Spanning Trees: A spanning tree of a graph, G, is a set of |V|-1 edges that connect all 
vertices of the graph. 
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There are different representations of a graph. They are: 
 

• Adjacency list representation 
• Adjacency matrix representation 

 
Adjacency list representation  
 
An Adjacency list representation of a Graph G = {V, E} consists of an array of 
adjacency lists denoted by adj of  V list. For each vertex uєV, adj[u] consists of all 
vertices adjacent to u in the graph G. 
 
Consider the graph of Figure 8.2. 

 
            Figure 8.2: A Graph 
 
The following is the adjacency list representation of graph of Figure 8.2: 
 
adj [1] = {2, 3, 5} 
adj [2] = {1, 4} 
adj [3] = {1, 4, 5} 
adj [4] = {2, 3, 5} 
adj [5] = {1, 3, 4} 
 
An adjacency matrix representation of a Graph G=(V, E) is a matrix A(aij) such that 
 
aij =                 1 if edge (i, j) belongs to E    
                0 otherwise 

1 2 

3 4 

5 

 
The adjacency matrix for the graph of Figure 8.2 is given below: 
 

1   2    3     4    5 
1 0   1    1     0    1      
 
2 1   0    0     1    1      
 
3 1   0    0     1    1      
 
4 0   1    1     0    1      
 
5 1   0    1     1    0      
Observe that the matrix is symmetric along the main diagonal. If we define the 
adjacency matrix as A and the transpose as AT , then for an undirected graph G as 
above, A = AT.   
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Graphs Graph connectivity : 

 
A connected graph is a graph in which path exists between every pair of vertices.  
 
A strongly connected graph is a  directed graph in which every pair of distinct vertices 
are connected with each other.  
 
A weakly connected graph is a directed graph whose underlying graph is connected, 
but not strongly connected.  
 
A complete graph is a graph in which there exists edge between every pair of vertices. 
 

 Check Your Progress 1 
 
1) A graph with no cycle is called _______ graph. 
2) Adjacency matrix of an undirected graph is __________ on main diagonal. 
3) Represent the following graphs(Figure 8.3 and Figure 8.4) by adjacency matrix: 

 
 
 
                                                                        
 
                                                           

4 3 

2 1 

 
 
 
 
 
       Figure 8.3: A Directed Graph 
 
 
 
 
 
 
 
 
                                                              

1 

4 3 

2 

 
Figure 8.4: A  Graph 

 

8.3 SHORTEST PATH ALGORITHMS 
 
A driver takes shortest possible route to reach destination. The problem that we will 
discuss here is similar to this kind of finding shortest route in a graph. The graphs are 
weighted directed graphs. The weight could be time, cost, losses other than distance  
designated by numerical values. 
 
Single source shortest path problem : To find a shortest path from a single source to 
every vertex of the Graph.  
 
Consider a Graph G = (V, E). We wish to find out the shortest path from a single 
source vertex sєV, to every vertex vєV. The single source shortest path algorithm 
(Dijkstra’s Algorithm) is based on assumption that no edges have negative weights.  
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The procedure followed to find shortest path are based on a concept called relaxation. 
This method repeatedly decreases the upper bound of actual shortest path of each 
vertex from the source till it equals the shortest-path weight. Please note that shortest 
path between two vertices contains other shortest path within it. 
 
8.3.1 Dijkstra’s Algorithm 

 
Djikstra’s algorithm (named after its discover, Dutch computer scientist E.W. 
Dijkstra) solves the problem of finding the shortest path from a point in a graph (the 
source) to a destination with non-negative weight edge.  
 
It turns out that one can find the shortest paths from a given source to all vertices 
(points)  in a graph in the same time. Hence, this problem is sometimes called the 
single-source shortest paths problem. Dijkstra’s algorithm is a greedy algorithm, 
which finds shortest path between all pairs of vertices in the graph. Before describing 
the algorithms formally, let us study the method through an example. 
 

 

3
1 2 

6 1
   9

8 4 3 

66 

5 

 
Figure 8.5: A Directed Graph with no negative edge(s) 
 
Dijkstra’s algorithm keeps two sets of vertices:  
 

S   is the set of vertices whose shortest paths from the source 
have already been determined  

   Q = V-S  is the set of remaining vertices . 
The other data structures needed are:  

d array of best estimates of shortest path to each vertex from the 
source 

pi an array of predecessors for each vertex. predecessor is an array 
of vertices to which shortest path has already been determined. 

 
The basic operation of Dijkstra’s algorithm is edge relaxation. If there is an edge from 
u to v, then the shortest known path from s to u can be extended to a path from s to v 
by adding edge (u,v) at the end. This path will have length d[u]+w(u,v). If this is less 
than d[v], we can replace the current value of d[v] with the new value.  
 
The predecessor list is an array of indices, one for each vertex of a graph. Each vertex 
entry contains the index of its predecessor in a path through the graph. 
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Graphs Operation of Algorithm 

 
The following sequence of diagrams illustrate the operation of Dijkstra’s Algorithm.  
The bold vertices indicate the vertex to which shortest path has been determined.  
 
 

 

Initialize the graph, all the vertices have infinite 
costs except the source vertex which has zero cost 

 

From all the adjacent vertices, choose the closest 
vertex to the source s.  

As we initialized d[s] to 0, it’s s. (shown in bold 
circle)  

Add it to S  

Relax all vertices adjacent to s, i.e u and x  

Update vertices u and x by 10 and 5 as the 
distance from s.  

 

Choose the nearest vertex, x.  

Relax all vertices adjacent to x  

Update predecessors for u, v and y.  
Predecessor of x = s 
Predecessor of v = x ,s 
Predecessor of y = x ,s 
 
add x to S 

 

Now y is the closest vertex. Add it to S.  

Relax v and adjust its predecessor.  
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u is now closest, add it to S and adjust its adjacent 
vertex, v.  

Finally, add v to S.  

The predecessor list now defines the shortest path 
from each node to s.  

 
 
Dijkstra’s algorithm 
 
 * Initialise d and pi* 
for each vertex v in V( g ) 
       g.d[v] := infinity 
       g.pi[v] := nil 
       g.d[s] := 0; 
* Set S to empty * 
S := { 0 }  
Q := V(g)   
* While (V-S) is not null* 
while not Empty(Q) 
 

1. Sort the vertices in V-S according to the current best estimate of 
their distance from the source  
u := Extract-Min ( Q ); 

 
2. Add vertex u, the closest vertex in V-S, to S,  

AddNode( S, u ); 
 

3. Relax all the vertices still in V-S connected to u  
relax( Node u, Node v, double w[][] ) 

          if d[v] > d[u] + w[u]v] then 
          d[v] := d[u] + w[u][v] 
           pi[v] := u 

In summary, this algorithm starts by assigning a weight of infinity to all vertices, and 
then selecting a source and assigning a weight of zero to it. Vertices are added to the 
set for which shortest paths are known. When a vertex is selected, the weights of its 
adjacent vertices are relaxed. Once all vertices are relaxed, their predecessor’s vertices 
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Graphs are updated (pi). The cycle of selection, weight relaxation and predecessor update is 

repeated until the shortest path to all vertices has been found. 

Complexity of Algorithm  

The simplest implementation of the Dijkstra’s algorithm stores vertices of set Q in an 
ordinary linked list or array, and operation Extract-Min(Q) is simply a linear search 
through all vertices in Q. In this case, the running time is Θ(n2).  

8.3.2 Graphs with Negative Edge costs 

We have seen that the above Dijkstra’s single source shortest-path algorithm works 
for graphs with non-negative edges (like road networks). The following two scenarios 
can emerge out of negative cost edges in a graph: 

• Negative edge with non- negative weight cycle reachable from the source. 

• Negative edge with non-negative weight cycle reachable from source. 

S B 

10

5 A 

5 
5 0 

─3 

 Figure 8.6 : A Graph with negative edge and non-negative weight cycle

The net weight of the cycle is 2(non-negative)(refer to Figure 8.6). 

 

─ 8 
5 

10 5 0 

A B 5 
S 

 

Figure  8.7: A graph with negative edge and negative weight cycle

The net weight of the  cycle is ─3(negative) (refer to Figure 8.7). The shortest path 
from A to B is not well defined as the shortest path to this vertex are infinite, i.e., by 
traveling each cycle we can decrease the cost of the shortest path by 3, like (S, A, B) 
is path (S, A, B, A, B) is a path with less cost and so on. 
 
Dijkstra’s Algorithm works only for directed graphs with non-negative weights (cost).  
 
8.3.3  Acyclic Graphs  
 
A path in a directed graph is said to form a cycle is there exists a path (A,B,C,…..P) 
such that A = P. A graph is called acyclic if there is no cycle in the graph.  
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Searching Techniques 8.3.4   All Pairs Shortest Paths Algorithm 

 
In the last section, we discussed about shortest path algorithm which starts with a 
single source and finds shortest path to all vertices in the graph. In this section, we 
shall discuss the problem of finding shortest path between all pairs of vertices in a 
graph. This problem is helpful in finding distance between all pairs of cities in a road 
atlas. All pairs shortest paths problem is mother of all shortest paths problems. 
 
In this algorithm, we will represent the graph by adjacency matrix. 
 
The weight of an edge Cij in an adjacency matrix representation of a directed graph is 
represented as follows 
 

0                    if i = j 
                  weight of the directed edge from i to j   i.e (i,j)  if i ≠ j and (i j) belongs to 
E  
Cij =          ∞                    if i ≠ j and (i, j) does not belong to E 
 
 
Given a directed graph G = (V, E), where each edge (v, w) has a non-negative cost 
C(v , w), for all pairs of vertices (v, w) to find the lowest cost path from v to w. 
 
The All pairs shortest paths problem can be considered as a generalisation of single-
source-shortest-path problem, by using Dijkstra’s algorithm by varying the source 
node among all the nodes in the graph. If negative edge(s) is allowed, then we can’t 
use Dijkstra’s algorithm. 
 
In this section we shall use a recursive solution to all pair shortest paths problem 
known as Floyd-Warshall algorithm, which runs in O(n3) time. 
 
This algorithm is based on the following principle. For graph G let V = {1, 2, 
3,…,n}.Let us consider a sub set of the vertices {1, 2, 3, …..,k. For any pair of 
vertices that belong to V, consider all paths from i to j whose intermediate vertices are 
from {1, 2, 3, ….k}. This algorithm will exploit the relationship between path p and 
shortest path from i to j whose intermediate vertices are from {1, 2, 3, ….k-1} with 
the following two possibilities: 
 

1. If k is not an intermediate vertex in the path p, then all the intermediate 
vertices of the path p are in {1, 2, 3, ….,k-1}. Thus, shortest path from i to j 
with intermediate vertices in {1, 2, 3, ….,k-1} is also the shortest path from i 
to j with vertices in {1, 2, 3, …, k}. 

 
2. If k is an intermediate vertex of the path p, we break down the path p into path 

p1 from vertex i to k and path p2 from vertex k to j. So, path p1 is the shortest 
path from i to k with intermediate vertices in {1, 2, 3, …,k-1}. 

 
During iteration process we find the shortest path from i to j using only vertices (1, 2, 
3, …, k-1} and in the next step, we find the cost of using the kth  vertex as an 
intermediate step. If this results in lower cost, then we store it. 
 
After n iterations (all possible iterations), we find the lowest cost path from i to j using 
all vertices (if necessary). 
 
Note the following: 
 
Initialize the matrix  
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Graphs C[i][ j] = ∞  if (i, j) does not belong to E for graph G = (V, E) 

 
Initially, D[i][j] = C[i][j]  
  
We also define a path matrix P where P[i][j]  holds intermediate vertex k on the least 
cost path from i to j that leads to the shortest path from i to j . 
 
Algorithm (All Pairs Shortest Paths) 
 
N = number of rows of the graph 
D[i[j] = C[i][j]  
For k  from 1 to n 
   Do for i = 1 to n 
       Do for j = 1 to n 
             D[i[j]= minimum( dij

(k-1) , dik
(k-1) + dkj

(k-1)) ) 
       Enddo 
   Enddo 
Enddo 
 
where  dij

(k-1)  = minimum path from i to j using k-1 intermediate vertices  
where  dik

(k-1)  = minimum path from j to k using k-1 intermediate vertices  
where  dkj

(k-1)  = minimum path from k to j using k-1 intermediate vertices 
 
Program 8.1 gives the program segment for the All pairs shortest paths algorithm. 
 
AllPairsShortestPaths(int N, Matrix C, Matrix P, Matrix D) 
{ 

int i, j, k 
 

if i = j then C[i][j] = 0  
for ( i = 0; i < N; i++) 
{ 
   for (j = 0; j < N; j++) 

     { 
          D[i][j] = C[i][j]; 
                          P[i][j] = -1; 
      } 

  D[i][j] = 0; 
} 

 
for (k=0; k<N; k++) 

    { 
        for (i=0; i<N; i++) 
        { 
           for (j=0; J<N; J++) 
             { 
                   if (D[i][k] + D[k][j]  < D[i][j]) 
                     { 
                            D[i][j] = D[i][k] + D[k][j]; 
                             P[i][j] = k; 
                       } 
                           } 
              } 
            } 
}  
 
/*********** End *************/ 
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Program 8.1 : Program segment for All pairs shortest paths algorithm                       
 
From the above algorithm, it is evident that it has O(N3) time complexity. 
 
Shortest path algorithms had numerous applications in the areas of Operations 
Research, Computer Science, Electrical Engineering and other related areas. 
 

 Check Your Progress 2 
 
1) _________ is the basis of Dijkstra’s algorithm 
 
2) What is the complexity of All pairs shortest paths algorithm? 
 

………………………………………………………………………………………….. 

8.4 MINIMUM COST SPANNING TREES  

A spanning tree of a graph is just a subgraph that contains all the vertices and is a tree 
(with no cycle). A graph may have many spanning trees. 

       
     
     
     
     
 
                                     Figure 8.8: A Graph 
 
 
 
 
 
 
 

Figure 8.9 : Spanning trees of the Graph of Figure 8.9 
 
Consider the graph of Figure 8.8. It’s spanning trees are shown in Figure 8.9. 
Now, if the graph is a weighted graph (length associated with each edge). The weight 
of the tree is just the sum of weights of its edges. Obviously, different spanning trees 
have different weights or lengths. Our objective is to find the minimum length 
(weight) spanning tree.  
 
Suppose, we have a group of islands that we wish to link with bridges so that it is 
possible to travel from one island to any other in the group. The set of bridges which 
will enable one to travel from any island to any other at minimum capital cost to the 
government is the minimum cost spanning tree. 
 
8.4.1 Kruskal’s Algorithm 
 
Krushkal’s algorithm uses the concept of forest of trees. Initially the forest consists of 
n single node trees (and no edges). At each step, we add one (the cheapest one) edge 
so that it links two trees together. If it forms a cycle, it would simply mean that it links 
two nodes that were already connected. So, we reject it. 
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Graphs The steps in Kruskal’s Algorithm are as follows: 

1. The forest is constructed from the graph G - with each node as a separate tree 
in the forest.  

2. The edges are placed in a priority queue.  
3. Do until we have added n-1 edges to the graph, 

1. Extract the cheapest edge from the queue.  
2. If it forms a cycle, then a link already exists between the concerned 

nodes. Hence reject it. 
3. Else add it to the forest. Adding it to the forest will join two trees 

together. 

The forest of trees is a partition of the original set of nodes. Initially all the trees have 
exactly one node in them. As the algorithm progresses, we form a union of two of the 
trees (sub-sets), until eventually the partition has only one sub-set containing all the 
nodes. 
 
Let us see the sequence of operations to find the Minimum Cost Spanning Tree(MST) 
in a graph using Kruskal’s algorithm. Consider the graph of Figure 8.10., Figure 8.11 
shows the construction of MST of graph of Figure 8.10. 
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ure 8.10 : A Graph 
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Figure 8.11 : Construction of Minimum Cost Spanning Tree for the Graph of Figure 8.10 by 

application of Kruskal’s algorithm 
 
The following are various steps in the construction of MST for the graph of          
Figure 8.10 using Kruskal’s algorithm. 
 
Step 1 :  The lowest cost edge is selected from the  graph which is not in MST 

(initially MST is empty). The lowest cost edge is 3 which is added to the MST 
(shown in bold edges) 

 
Step 2:  The next lowest cost edge which is not in MST is added (edge with cost 4). 
 
Step 3 : The next lowest cost edge which is not in MST is added (edge with cost 6). 
 
Step 4 : The next lowest cost edge which is not in MST is added (edge with cost 7). 
 
Step 5 : The next lowest cost edge which is not in MST is 8 but will form a cycle. So, 

it is discarded . The next lowest cost edge 9 is added. Now the MST contains 
all the vertices of the graph. This results in the MST of the original graph. 

 
8.4.2 Prim’s Algorithm 

 
Prim’s algorithm uses the concept of sets. Instead of processing the graph by sorted 
order of edges, this algorithm processes the edges in the graph randomly by building 
up disjoint sets. 
                                                  _ 
It uses two disjoint sets A and A.  Prim’s algorithm works by iterating through the 
nodes and then finding the shortest edge from the set A to that of set A (i.e. out side 
A), followed by the addition of the node to the new graph. When all the nodes are 
processed, we have a minimum cost spanning tree. 
 
Rather than building a sub-graph by adding one edge at a time, Prim’s algorithm 
builds a tree one vertex at a time.  
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Graphs The steps in Prim’s algorithm are as follows: 

 
Let G be the graph with n vertices for which minimum cost spanning tree is to be 
generated. 
 

    Let T be the minimum spanning tree. 
    Let T be a single vertex x. 
    while (T has fewer than n vertices) 
    { 
        find the smallest edge connecting  T to G-T 
        add it to T 
    } 
Consider the graph of Figure 8.10. Figure 8.12 shows the various steps involved in 
the construction of Minimum Cost Spanning Tree of graph of Figure 8.10. 
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Figure 8.12 : Construction of Minimum Cost Spanning Tree for the Graph of Figure 8.10 by 

application of Prim’s algorithm 
 
The following are various steps in the construction of MST for the graph of         
Figure 8.10 using Prim’s algorithm. 
 
Step 1 :  We start with a single vertex (node). Now the set A contains this single node 

and set A  contains rest of the nodes. Add the edge with the lowest cost from 
A to A. The edge with cost 4 is added. 

 33



 
Graph Algorithms and 
Searching Techniques 

 
Step 2:  Lowest cost path from shaded portion of the graph to the rest of the graph 

(edge with cost 3) is selected and added to MST. 
 
Step 3:  Lowest cost path from shaded portion of the graph to the rest of the graph 

(edge with cost 6) is selected and added to MST. 
 
Step 4:  Lowest cost path from shaded portion of the graph to the rest of the graph 

(edge with cost 73) is selected and added to MST. 
 
Step 5: The next lowest cost edge to the set not in MST is 8 but forms a cycle. So, it is 

discarded. The next lowest cost edge 9 is added. Now the MST contains all 
the vertices of the graph. This results in the MST of the original graph. 

 
Comparison of Kruskal’s algorithm and Prim’s algorithm 
 
 Kruskal’s algorithm Prim’s algorithm 
Principle Based on generic minimum cost 

spanning tree algorithms 
A special case of generic minimum 
cost spanning tree algorithm. 
Operates like Dijkstra’s algorithm 
for finding shortest path in a graph. 

Operation Operates on a single set of 
edges in the graph 

Operates on two disjoint sets of 
edges in the graph 

Running time O(E log E) where E is the 
number of edges in the graph 

O(E log V), which is 
asymptotically same as Kruskal’s 
algorithm 

For the above comparison, it may be observed that for dense graphs having more 
number of edges for a given number of vertices, Prim’s algorithm is more efficient. 
 
8.4.3 Applications 
 
The minimum cost spanning tree has wide applications in different fields. It represents 
many complicated real world problems like: 
 

1. Minimum distance for travelling all cities at most one (travelling salesman 
problem). 

2. In electronic circuit design, to connect n pins by using n-1 wires, using least 
wire. 

3. Spanning tree also finds their application in obtaining independent set of 
circuit equations for an electrical network. 

 

8.5 BREADTH FIRST SEARCH (BFS) 
 
When BFS is applied, the vertices of the graph are divided into two categories. The 
vertices, which are visited as part of the search and those vertices, which are not 
visited as part of the search. The strategy adopted in breadth first search is to start 
search at a vertex(source). Once you started at source, the number of vertices that are 
visited as part of the search is 1 and all the remaining vertices need to be visited. 
Then, search the vertices which are adjacent to the visited vertex from left to order. In 
this way, all the vertices of the graph are searched.  
 
Consider the digraph of Figure 8.13. Suppose that the search started from S. Now, the 
vertices (from left to right) adjacent to S which are not visited as part of the search are 
B, C, A. Hence, B,C and A are visited after S as part of the BFS. Then, F is the 
unvisited vertex adjacent to B. Hence, the visit to B, C and A is followed by F. The 
unvisited vertex adjacent of C is D. So, the visit to F is followed by D. There are no 
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Graphs unvisited vertices adjacent to A. Finally, the unvisited vertex E adjacent to D is 

visited. 
 
Hence, the sequence of vertices visited as part of BFS is S, B, C, A, F, D and E.  
 

8.6 DEPTH FIRST SEARCH (DFS) 
 
The strategy adopted in depth first search is to search deeper whenever possible. This 
algorithm repeatedly searches deeper by visiting unvisited vertices and whenever an 
unvisited vertex is not found, it backtracks to previous vertex to find out whether there 
are still unvisited vertices.  
 
As seen, the search defined above is inherently recursive. We can find a very simple 
recursive procedure to visit the vertices in a depth first search. The DFS is more or 
less similar to pre-order tree traversal. The process can be described as below: 
 
Start from any vertex (source) in the graph and mark it visited. Find vertex that is 
adjacent to the source and not previously visited using adjacency matrix and mark it 
visited. Repeat this process for all vertices that is not visited, if a vertex is found 
visited in this process, then return to the previous step and start the same procedure 
from there. 
 
If returning back to source is not possible, then DFS from the originally selected 
source is complete and start DFS using any unvisited vertex. 

 

S A 

C 

E

DB 

F 

 
  Figure 8.13 : A Digraph 
 
Consider the digraph of Figure 8.13. Start with S and mark it visited. Then visit the 
next vertex A, then C and then D and at last E. Now there are no adjacent vertices of E 
to be visited next. So, now, backtrack to previous vertex D as it also has no unvisited 
vertex. Now backtrack to C, then A, at last to S. Now S has an unvisited vertex B. 
Start DFS with B as a root node and then visit F. Now all the nodes of the graph are 
visited.  
 
Figure 8.14 shows a DFS tree with a sequence of visits. The first number indicates the 
time at which the vertex is visited first and the second number indicates the time at 
which the vertex is visited during back tracking. 
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Figure 8.14 : DFS tree of digraph of Figure 8.13 
 
The DFS forest is shown with shaded arrow in Figure 8.14. 
 
Algorithm for DFS  
 
Step 1: Select a vertex in the graph and make it the source vertex and mark it visited. 
 
Step 2: Find a vertex that is adjacent to the souce vertex and start a new search if it is 

not already visited. 
 
Step 3: Repeat step 2 using a new source vertex. When all adjacent vertices are   

visited, return to previous source vertex and continue search from there. 
 
If n is the number of vertices in the graph and the graph is represented by an 
adjacency matrix, then the total time taken to perform DFS is O(n2). If G is 
represented by an adjacency list and the number of edges of G are e, then the time 
taken to perform DFS is O(e). 
 
 

8.7 FINDING STRONGLY CONNECTED 
COMPONENTS 

 
A beautiful application of  DFS is finding a strongly connected component of a graph.   
 
Definition: For graph G = (V, E) , where V is the set of vertices and E is the set of 
edges, we define a strongly connected components as follows: 
 
U is a sub set of V such that u, v belongs to U such that, there is a path from u to v and 
v to u. That is, all pairs of vertices are reachable from each other. 
 
In this section we will use another concept called transpose of a graph. Given a 
directed graph G a transpose of G is defined as GT. GT is defined as a graph with the 
same number of vertices and edges with only the direction of the edges being 
reversed. GT is obtained by  transposing the adjacency matrix of the directed graph G. 
 
The algorithm for finding these strongly connected components uses the transpose of 
G, GT. 

 
G =  ( V, E ),  GT = ( V, ET ), where ET = {  ( u, v ): ( v, u ) belongs to E } 
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   Figure 8.15: A Digraph 

11/12 1/8 9/14 6/7 

3/4 2/5 10/13 

 

 
Figure 8.16: Transpose and strongly connected components of digraph of Figure 8.15 

9/14 

3/4 2/5 

1/8 6/7 11/12 

10/13 

 
Figure 8.15 shows a directed graph with sequence in DFS (first number of the vertex 
shows the discovery time and second number shows the finishing time of the vertex 
during DFS. Figure 8.16 shows the transpose of the graph in Figure 8.15 whose edges 
are reversed. The strongly connected components are shown in zig-zag circle in 
Figure 8.16. 
 
To find strongly connected component we start with a vertex with the highest 
finishing time and start DFS in the graph GT  and then in decreasing order of finishing 
time. DFS with vertex with finishing time 14 as root finds a strongly connected 
component. Similarly, vertices with finishing times 8 and then 5, when selected as 
source vertices also lead to strongly connected components.  

Algorithm for finding strongly connected components of a Graph: 

Strongly Connected Components (G) 

where d[u] = discovery time of the vertex u during DFS , f[u]  = finishing time of a 
vertex u during DFS, GT   = Transpose of the adjacency matrix  

Step 1: Use DFS(G) to compute f[u] ∀u∈V  
Step 2: Compute  GT  
Step 3: Execute DFS in GT  
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Step 4: Output the vertices of each tree in the depth-first forest of Step 3 as a separate 
strongly connected component.  

 Check Your Progress 3 
 
1) Which graph traversal uses a queue to hold vertices that are to be processed next ? 

………………………………………………………………………………………

………………………………………………………………………………………. 
 

2) Which graph traversal is recursive by nature? 

………………………………………………………………………………….

…………………………………………………………………………………… 

 
3)       For a dense graph, Prim’s algorithm is faster than Kruskal’s algorithm 
             True/False 
 

4)       Which graph traversal technique is used to find strongly connected component    
of a graph? 
……………………………………………………………………………………

…………………………………………………………………………………… 
 

8.8 SUMMARY  
 
Graphs are data structures that consist of a set of vertices and a set of edges that 
connect the vertices. A graph where the edges are directed is called directed graph. 
Otherwise, it is called an undirected graph. Graphs are represented by adjacency lists 
and adjacency matrices.  Graphs can be used to represent a road network where the 
edges are weighted as the distance between the cities. Finding the minimum distance 
between single source and all other vertices is called single source shortest path 
problem. Dijkstra’s algorithm is used to find shortest path from a single source to  
every other vertex in a directed graph. Finding shortest path between every pair of 
vertices is called all pairs shortest paths problem. 
 

A spanning tree of a graph is a tree consisting of only those edges of the graph that 
connects all vertices of the graph with minimum cost. Kruskal’s and Prim’s 
algorithms find minimum cost spanning tree in a graph. Visiting all nodes  in a graph 
systematically in some manner is called traversal. Two most common methods are 
depth-first and breadth-first searches.  
 

8.9 SOLUTIONS/ANSWERS 
 
Check Your Progress 1 
 

1) an acyclic 
2) symmetric 
3) The adjacency matrix of the directed graph  and undirected graph are as follows: 
 
                    0   1   1   0 
                    0   0   0   0 
                    0   0   0   1 
                    1   1   0   0 
           
        (Refer to Figure 8.3) 
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                    0   1   1   1 
                    1   0   0   1 
                    1   0   0   1 
                    1   1   1   0 
  
       (Refer to Figure 8.3) 
 
Check Your Progress 2 
 
1) Node relaxation 
2) O(N3) 
 
Check Your Progress 3 
 
1) BFS 
2) DFS 
3) True 
4) DFS 
 

8.10    FURTHER READINGS 
 

1. Fundamentals of Data Structures in C++ by E.Horowitz, Sahni and D.Mehta; 
Galgotia Publications.  

2. Data Structures and Program Design in C by Kruse, C.L.Tonodo and B.Leung; 
Pearson Education. 

3. Data Structures and Algorithms by  Alfred V.Aho; Addison Wesley. 
  
Reference Websites 

 

http://www.onesmartclick.com/engineering/data-structure.html 
http://msdn.microsoft.com/vcsharp/programming/datastructures/ 
http://en.wikipedia.org/wiki/Graph_theory  

http://www.onesmartclick.com/engineering/data-structure.html
http://en.wikipedia.org/wiki/Graph_theory
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9.0 INTRODUCTION 

Searching is the process of looking for something: Finding one piece of data that has 
been stored within a whole group of data. It is often the most time-consuming part of 
many computer programs. There are a variety of methods, or algorithms, used to 
search for a data item, depending on how much data there is to look through, what 
kind of data it is, what type of structure the data is stored in, and even where the data 
is stored - inside computer memory or on some external medium.  

 
Till now, we have studied a variety of data structures, their types, their use and so on. 
In this unit, we will concentrate on some techniques to search a particular data or 
piece of information from a large amount of data. There are basically two types of 
searching techniques, Linear or Sequential Search and Binary Search. 
 
Searching is very common task in day-to-day life, where we are involved some or 
other time, in searching either for some needful at home or office or market, or 
searching a word in dictionary. In this unit, we see that if the things are organised in 
some manner, then search becomes efficient and fast. 
 
All the above facts apply to our computer programs also. Suppose we have a 
telephone directory stored in the memory in an array which contains Name and 
Numbers. Now, what happens if we have to find a number? The answer is search that 
number in the array according to name (given). If the names were organised in some 
order, searching would have been fast. 
 
 So, basically a search algorithm is an algorithm which accepts an argument ‘a’ and 
tries to find the corresponding data where the match of ‘a’ occurs in a file or in a 
table. 
 

9.1 OBJECTIVES 

After going through this unit, you should be able to: 

• know the basic concepts of searching; 

• know the process of performing the Linear Search; 

• know the process of performing the Binary Search and 

• know the applications of searching. 
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9.2 LINEAR SEARCH 
Linear search is not the most efficient way to search for an item in a collection of 
items. However, it is very simple to implement. Moreover, if the array elements are 
arranged in random order, it is the only reasonable way to search. In addition, 
efficiency becomes important only in large arrays; if the array is small, there aren’t 
many elements to search and the amount of time it takes is not even noticed by the 
user. Thus, for many situations, linear search is a perfectly valid approach. 
 
Before studying Linear Search, let us define some terms related to search. 
 
A file is a collection of records and a record is in turn a collection of fields. A field, 
which is used to differentiate among various records, is known as a ‘key’. 
 
For example, the telephone directory that we discussed in previous section can be 
considered as a file, where each record contains two fields: name of the person and 
phone number of the person. 
 
Now, it depends on the application whose field will be the ‘key’. It can be the name of 
person (usual case) and it can also be phone number. We will locate any particular 
record by matching the input argument ‘a’ with the key value. 
 
The simplest of all the searching techniques is Linear or Sequential Search. As the 
name suggests, all the records in a file are searched sequentially, one by one, for the 
matching of key value, until a match occurs. 
 
The Linear Search is applicable to a table which it should be organised in an array. Let 
us assume that a file contains ‘n’ records and a record has ‘a’ fields but only one key. 
The values of key are organised in an array say ‘m’. As the file has ‘n’ records, the 
size of array will be ‘n’ and value at position R(i) will be the key of record at position 
i. Also, let us assume that ‘el’ is the value for which search has to be made or it is the 
search argument. 
 
Now, let us write a simple algorithm for Linear Search. 
 
Algorithm 
 
Here,   m  represents the unordered array of elements 
            n   represents number of elements in the array and 
            el  represents the value to be searched in the list 
 
Sep 1: [Initialize] 
            k=0 
            flag=1 
 
Step 2: Repeat step 3 for k=0,1,2…..n-1 
 
Step 3: if (m[k]=el ) 

then 
  flag=0 

    print “Search is successful” and element is found at location (k+1) 
  stop 
 endif 
 
Step 4: if  (flag=1) then 

print “Search is unsuccessful” 
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endif 
 

Step 5: stop 
 
Program 9.1 gives the program for Linear Search. 
 
/*Program for Linear Search*/ 
/*Header Files*/ 
#include<stdio.h> 
#include<conio.h> 
/*Global Variables*/ 
int search; 
int flag; 
/*Function Declarations*/ 
int input (int *, int, int); 
void linear_search (int *, int, int); 
void display (int *, int); 
/*Functions */ 
void linear_search(int m[ ], int n, int el) 
{ 

int k; 
flag = 1; 
for(k=0; k<n; k++) 
{ 

  if(m[k]==el 
      {  

        printf(“\n Search is Successful\n”); 
                 printf(“\n Element : %i Found at location : %i”, element, k+1); 

        flag = 0; 
       }  
   } 
if(flag==1) 

printf(“\n Search is unsuccessful”); 
} 
void display(int m[ ], int n) 
{ 

  int i; 
  for(i=0; i< 20; i++) 
  { 

    printf(“%d”, m[i]; 
   } 

} 
int input(int m[ ], int n, int el) 
{ 

 int i; 
 n = 20; 
 el = 30; 
 printf(“Number of elements in the list : %d”, n); 
 for(i=0;i<20;i++) 

{ 
  m[i]=rand( )%100; 
} 

  printf(“\n Element to be searched :%d”, el); 
  search = el; 
 return n; 
} 
/* Main Function*/ 
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{ 
int n, el, m[200]; 
number = input(m, n,el); 
el = search; 
printf(“\n Entered list as follows: \n”); 
display(m, n); 
linear_search(m, n, el); 
printf(“\n In the following list\n”); 
display(m, n); 

} 
 

Program 9.1: Linear Search 
 
Program 9.1 examines each of the key values in the array ‘m’, one by one and stops 
when a match occurs or the total array is searched. 
 
Example: 
 
A telephone directory with n = 10 records and Name field as key. Let us assume that  
the names are stored in array ‘m’ i.e. m(0) to m(9) and the search has to be made for 
name “Radha Sharma”, i.e. element = “Radha Sharma”. 
 

Telephone Directory 
 
Name                          Phone No. 
Nitin Kumar                25161234 
Preeti Jain                   22752345 
Sandeep Singh            23405678 
Sapna Chowdhary      22361111 
Hitesh Somal              24782202 
R.S.Singh                   26254444 
Radha Sharma            26150880 
S.N.Singh                   25513653 
Arvind Chittora          26252794 
Anil Rawat                 26257149 
 
The above algorithm will search for element = “Radha Sharma” and will stop at 6th 
index of array and the required phone number is “26150880”, which is stored at 
position 7 i.e. 6+1. 
 
Efficiency of Linear Search 
 
How many number of comparisons are there in this search in searching for a given 
element? 
  
The number of comparisons depends upon where the record with the argument key 
appears in the array. If record is at the first place, number of comparisons is ‘1’, if 
record is at last position ‘n’ comparisons are made. 
 
If it is equally likely for that the record can appear at any position in the array, then, a 
successful search will take (n+1)/2 comparisons and an unsuccessful search will take 
‘n’ comparisons.  
 
In any case, the order of the above algorithm is O(n). 
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1) Linear search uses an exhaustive method of checking each element in the array 

against a key value. When a match is found, the search halts. Will sorting the 
array before using the linear search have any effect on its order of efficiency? 

…………………………………………………………………………………… 

2) In a best case situation, the element was found with the fewest number of 
comparisons. Where, in the list, would the key element be located? 

…………………………………………………………………………………… 
 

9.3 BINARY SEARCH 

An unsorted array is searched by linear search that scans the array elements one by 
one until the desired element is found. 

The reason for sorting an array is that we search the array “quickly”. Now, if the array 
is sorted, we can employ binary search, which brilliantly halves the size of the search 
space each time it examines one array element.  
 
An array-based binary search selects the middle element in the array and compares its 
value to that of the key value. Because, the array is sorted, if the key value is less than 
the middle value then the key must be in the first half of the array. Likewise, if the 
value of the key item is greater than that of the middle value in the array, then it is 
known that the key lies in the second half of the array. In either case, we can, in effect, 
“throw out” one half of the search space or array with only one comparison.  
 
Now, knowing that the key must be in one half of the array or the other, the binary 
search examines the mid value of the half in which the key must reside. The algorithm 
thus narrows the search area by half at each step until it has either found the key data 
or the search fails.  
 
As the name suggests, binary means two, so it divides an array into two halves for 
searching. This search is applicable only to an ordered table  (in  either ascending or 
in descending order). 
 
Let us write an algorithm for Binary Search and then we will discuss it. The array 
consists of elements stored in ascending order. 
 
Algorithm 
 
Step 1: Declare an array ‘k’ of size ‘n’ i.e. k(n) is an array which stores all the keys of 

a file containing ‘n’ records 
 
Step 2: i 0 
 
Step 3: low 0, high n-1 
 
Step 4: while (low <= high)do 
   mid = (low + high)/2 
   if (key=k[mid]) then 

write “record is at position”, mid+1  //as the array 
starts from the 0th position 

   else 
    if(key < k[mid]) then 
     high = mid - 1 



 
Searching    else 

     low = mid + 1 
    endif 
   endif 
  endwhile 
 
Step 5: Write “Sorry, key value not found” 
 
Step 6: Stop 
 
Program 9.2 gives the program for Binary Search. 
 
/*Header Files*/ 
#include<stdio.h> 
#include<conio.h> 
/*Functions*/ 
void binary_search(int array[ ], int value, int size) 
{ 

 int found=0; 
int high=size-1, low=0, mid; 
mid = (high+low)/2; 
printf(“\n\n Looking for %d\n”, value); 
while((!found)&&(high>=low)) 
{ 

printf(“Low %d Mid%d High%d\n”, low, mid, high); 
if(value==array[mid] ) 
{printf(“Key value found at position %d”,mid+1); 
 found=1; 
} 
else 
{if (value<array[mid]) 

high = mid-1; 
else 

low = mid+1; 
mid = (high+low)/2; 
} 

} 
if (found==1 
printf(“Search successful”); 
else 
printf(“Key value not found”); 

} 
/*Main Function*/ 
void main(void) 
{ 

int array[100], i; 
/*Inputting Values to Array*/ 
for(i=0;i<100;i++) 

               { printf(“Enter the name:”); 
    scanf(“%d”, array[i]); 
               } 

printf(“Result of search %d\n”, binary_searchy(array,33,100)); 
printf(“Result of search %d\n”, binary_searchy(array, 75,100)); 
printf(“Result of search %d\n”, binary_searchy(array,1,100)); 

} 
Program 9.2 : Binary Search 
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Example: 
 
 Let us consider a file of 5 records, i.e., n = 5 
And k is a sorted array of the keys of those 5 records. 
  k 

0   11 

  22 

  33 

  44 

  55 

 
1 
 
2 
 
3 
 
4 
Let key = 55, low = 0, high = 4 

 
Iteration 1: mid = (0+4)/2 = 2 
                    k(mid) = k (2) = 33 
                  Now key > k (mid) 
                     So low = mid + 1 = 3 
Iteration 2: low = 3, high = 4 (low <= high) 
                   Mid = 3+4 / 2 = 3.5 ~ 3 (integer value) 
              Here key > k (mid) 
              So low = 3+1 = 4 
Iteration 3: low = 4, high = 4 (low<= high) 
      Mid = (4+4)/2 = 4 
              Here key = k(mid) 
 
So, the record is at mid+1 position, i.e., 5 
 
Efficiency of Binary Search 
 
Each comparison in the binary search reduces the number of possible candidates 
where the key value can be found by a factor of 2 as the array is divided in two halves 
in each iteration. Thus, the maximum number of key comparisons are approximately 
log n. So, the order of binary search is O (log n). 
 
Comparative Study of Linear and Binary Search 
 
Binary search is lots faster than linear search. Here are some comparisons:  
 
NUMBER OF ARRAY ELEMENTS EXAMINED 
 
array size    |     linear search       binary search 
               |      (avg. case)         (worst case) 
-------------------------------------------------------- 
           8      |            4                       4 
       128       |          64                       8 
       256       |        128                       9 
     1000       |        500                     11 
100,000       |   50,000                     18 
 
A binary search on an array is O(log2 n) because at each test, you can “throw out” 
one half of the search space or array whereas a linear search on an array is O(n). 
 
It is noteworthy that, for very small arrays a linear search can prove faster than a 
binary search. However, as the size of the array to be searched increases, the binary 
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speed.  
 
Still, the binary search has some drawbacks. First, it requires that the data to be 
searched be in sorted order. If there is even one element out of order in the data being 
searched, it can throw off the entire process. When presented with a set of unsorted 
data, the efficient programmer must decide whether to sort the data and apply a binary 
search or simply apply the less-efficient linear search. Is the cost of sorting the data is 
worth the increase in search speed gained with the binary search? If you are searching 
only once, then it is probably to better do a linear search in most cases.  
 

 Check Your Progress 2 
 
1) State True or False 

a. The order of linear search in worst case is O (n/2)    True/False 
b. Linear search is more efficient than Binary search.    True/False 
c. For Binary search, the array has to be sorted in ascending order only. 

  True/False 
2) Write the Binary search algorithm where the array is sorted in descending order. 

   

9.4 APPLICATIONS 

The searching techniques are applicable to a number of places in today’s world, may it 
be Internet, search engines, on line enquiry, text pattern matching, finding a record 
from database, etc. 

The most important application of searching is to track a particular record from a large 
file, efficiently and faster. 
 
Let us discuss some of the applications of Searching in the world of computers. 
 
1. Spell Checker 
 
This application is generally used in Word Processors. It is based on a program for 
checking spelling, which it checks and searches sequentially. That is, it uses the 
concept of Linear Search. The program looks up a word in a list of words from a 
dictionary. Any word that is found in the list is assumed to be spelled correctly. Any 
word that isn’t found is assumed to be spelled wrong. 
 
2. Search Engines 
 
Search engines use software robots to survey the Web and build their databases. Web 
documents are retrieved and indexed using keywords. When you enter a query at a 
search engine website, your input is checked against the search engine’s keyword 
indices. The best matches are then returned to you as hits. For checking, it uses any of 
the Search algorithms. 
 
Search Engines use software programs known as robots, spiders or crawlers. A robot 
is a piece of software that automatically follows hyperlinks from one document to the 
next around the Web. When a robot discovers a new site, it sends information back to 
its main site to be indexed. Because Web documents are one of the least static forms 
of publishing (i.e., they change a lot), robots also update previously catalogued sites. 
How quickly and comprehensively they carry out these tasks vary from one search 
engine to the next.  
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3. String Pattern matching 
 
Document processing is rapidly becoming one of the dominant functions of 
computers. Computers are used to edit, search and transport documents over the 
Internet, and to display documents on printers and computer screens. Web ‘surfing’ 
and Web searching are becoming significant and important computer applications, and 
many of the key computations in all of this document processing involves character 
strings and string pattern matching. For example, the Internet document formats 
HTML and XML are primarily text formats, with added tags for multimedia content. 
Making sense of the many terabytes of information on the Internet requires a 
considerable amount of text processing. This is accomplished using trie data structure, 
which is a tree-based structure that allows for faster searching in a collection of 
strings. 

9.5 SUMMARY 

Searching is the process of looking for something. Searching a list consisting of 
100000 elements is not the same as searching a list consisting of 10 elements. We 
discussed two searching techniques in this unit namely Linear Search and Binary 
Search. Linear Search will directly search for the key value in the given list. Binary 
search will directly search for the key value in the given sorted list. So, the major 
difference is the way the given list is presented. Binary search is efficient in most of 
the cases. Though, it had the overhead that the list should be sorted before search can 
start, it is very well compensated through the time (which is very less when compared 
to linear search) it takes to search. There are a large number of applications of 
Searching out of whom a few were discussed in this unit. 

9.6 SOLUTIONS / ANSWERS 

Check Your Progress 1 
 
1) No 
2) It will be located at the beginning of the list 
 
Check Your Progress 2 
 
1) (a) F 

(b) F 
(c) F 
 

9.7 FURTHER READINGS 

Reference Books 
1. Fundamentals of Data Structures in C++ by E. Horowitz, Sahai and D. Mehta, 

Galgotia Publications. 
 

2. Data Structures using C and C ++ by Yedidyah Hangsam, Moshe J. 
Augenstein and Aaron M. Tanenbaum, PHI Publications. 

 
3. Fundamentals of Data Structures in C by R.B. Patel, PHI Publications. 
 

Reference Websites 
 

http:// www.cs.umbc.edu  
http://www.fredosaurus.com 
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