

 Indira Gandhi
 National Open University
 School of Computer and
 Information Sciences

MCS-021
DATA AND

FILE STRUCTURES

Block

3
GRAPH ALGORITHMS AND SEARCHING
TECHNIQUES
UNIT 7
Advanced Trees 5

UNIT 8
Graphs 20

UNIT 9
Searching 40

 2

Programme / Course Design Committee

Prof. Sanjeev K. Aggarwal, IIT, Kanpur
Prof. M. Balakrishnan, IIT, Delhi
Prof. Harish Karnick, IIT, Kanpur
Prof. C. Pandurangan, IIT, Madras
Dr Om Vikas, Sr. Director,
 Ministry of CIT, Delhi
Prof. P. S. Grover, Sr. Consultant
 SOCIS, IGNOU

Faculty of School of Computer and
Information Sciences

Shri Shashi Bhushan
Shri Akshay Kumar
Prof. Manohar Lal
Shri V.V. Subrahmanyam
Shri P. Venkata Suresh

Block Preparation Team

Shri G.V.S.S.S.Srinivas (Content Editor)
 Technical Manager
 HCL Technologies

Shri Kamal Kundra
 Programme Chairman(IT)
 Jagan Institute of Management
 Studies, New Delhi

Shri Akshay Kumar Purohit
 Deputy Director (IT)
 Bureau of Indian Standards
 New Delhi

Shri P. Venkata Suresh
SOCIS, IGNOU

Prof. M.R.Dua (Language Editor)
New Delhi

Prof.A.K.Verma (Language Editor)
New Delhi

Course Coordinator : Shri.P. Venkata Suresh

Block Production Team

Shri T. R. Manoj, Section Officer (Pub.) and H. K Som, Consultant, SOCIS
CRC prepared by Shri A. N. Kispotta.

May, 2005

©Indira Gandhi National Open University, 2005

ISBN −

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any other means, without
permission in writing from the Indira Gandhi National Open University.

Further information on the Indira Gandhi National Open University courses may be obtained from the University’s
office at Maidan Garhi, New Delhi-110 068.

Printed and published on behalf on the Indira Gandhi National Open University, New Delhi by The Director, SOCIS.

Printed at:

BLOCK INTRODUCTION

This block focuses on Advanced trees, Graphs and Searching.

The unit on advanced trees is the extension of some of the concepts that are covered
in the unit on trees. In this unit, we shall study about Binary search trees (BST) ,
Graphs and Searching. The feature of BST is that all the nodes which hold values that
are less than the value of root will be in the left subtree of the root. All the nodes
which hold values that are larger than the value of the root will be in the right subtree
of the root. The same applies to every node in the BST when that node is treated as a
root node of the corresponding subtrees. In general, AVL trees are height balanced
trees. The difference of heights of the subtrees of any node in the AVL tree is of
atmost 1. Finally, in this unit, we discuss B-trees. One of the features of a B-tree is
that there will be more than one element residing in each node of the B-tree.
Advanced trees are discussed in unit-7.

Graphs is a very important topic in any course on Data Structures. In this unit, we
discuss both Direct graphs and Undirected Graphs. The major discussions in our unit
focus on the issues of finding the minimum cost spanning trees, finding the minimum
path between two different nodes of the graph. We shall discuss Kruskal’s and
Dijkstra’s algorithms in this unit. We shall also focus on the relation between a tree
and a graph. In detail we shall discuss Graphs in unit-8.

The final unit in this block focuses on Searching. We focus on Linear search and
Binary search. The advantages and disadvantages of both these techniques are
discussed. Also, their complexities are mentioned. The applications of both the search
techniques were also mentioned. It is very important to do a bit of work before
deciding on the search technique to be employed. In case, a wrong search technique is
employed it may lead to the increase of time and space complexities. The topic
Searching is discussed in unit-9.

There are programs in this block. Students are advised to simulate the programs by
hand before trying to execute them on the machine. All programs may not readily
execute on the machine. The programs were written in such a way that the older
versions of compilers will be able to execute them as the newer versions from third
parties will have some variance in the syntax. It is very important to simulate every
program by hand, make necessary modifications and then execute the program. It is
always suggested that students should write programs on their own and should not
copy any portion of the program that is existent in the block. You are also hereby
advised to refer to as many books as possible on the related topics to increase your
knowledge.

This block consists of three units and is organised as follows:

Unit-7 deals with Advanced trees. Binary search trees, AVL trees and B-trees are
discussed in this unit. Their applications are also discussed.

Unit-8 deals with Graphs. Both Direct graphs and Undirect graphs are discussed in
this unit. Various algorithms are also covered.

Unit-9 deals with Searching. Both Linear search and Binary search are discussed in
this unit.

Advanced Trees

UNIT 7 ADVANCED TREES

Structure Page Nos.

7.0 Introduction 5
7.1 Objectives 5
7.2 Binary Search Trees 5

7.2.1 Traversing a Binary Search Tree
7.2.2 Insertion of a node into a Binary Search Tree
7.2.3 Deletion of a node from a Binary Search Tree

7.3 AVL Trees 9
7.3.1 Insertion of a node into an AVL tree
7.3.2 Deletion of a node from an AVL tree
7.3.3 AVL tree rotations
7.3.4 Applications of AVL trees

7.4 B-Trees 14
7.4.1 Operations on B-trees
7.4.2 Applications of B-trees

7.5 Summary 18
7.6 Solutions/Answers 18
7.7 Further Readings 19

7.0 INTRODUCTION

Linked list representations have great advantages of flexibility over the contiguous
representation of data structures. But, they have few disadvantages also. Data
structures organised as trees have a wide range of advantages in various applications
and it is best suited for the problems related to information retrieval.
These data structures allow the searching, insertion and deletion of node in the
ordered list to be achieved in the minimum amount of time.

The data structures that we discuss primarily in this unit are Binary Search Trees,
AVL trees and B-Trees. We cover only fundamentals of these data structures in this
unit. Some of these trees are special cases of other trees and Trees are having a large
number of applications in real life.

7.1 OBJECTIVES

After going through this unit, you should be able to

• know the fundamentals of Binary Search trees;

• perform different operations on the Binary Search Trees;

• understand the concept of AVL trees;

• understand the concept of B-trees, and

• perform various operations on B-trees.

7.2 BINARY SEARCH TREES

A Binary Search Tree is a binary tree that is either empty or a node containing a key
value, left child and right child.

5

 Graph Algorithms and

Searching Techniques By analysing the above definition, we note that BST comes in two variants namely
empty BST and non-empty BST.

The empty BST has no further structure, while the non-empty BST has three
components.

The non-empty BST satisfies the following conditions:

a) The key in the left child of a node (if exists) is less than the key in its parent
node.

b) The key in the right child of a node (if exists) is greater than the key in its
parent node.

c) The left and right subtrees of the root are again binary search trees.

The following are some of the operations that can be performed on Binary search
trees:

• Creation of an empty tree

• Traversing the BST

• Counting internal nodes (non-leaf nodes)

• Counting external nodes (leaf nodes)

• Counting total number of nodes

• Finding the height of tree

• Insertion of a new node

• Searching for an element

• Finding smallest element

• Finding largest element

• Deletion of a node.

7.2.1 Traversing a Binary Search Tree

Binary Search Tree allows three types of traversals through its nodes. They are as
follow:

1. Pre Order Traversal
2. In Order Traversal
3. Post Order Traversal

 In Pre Order Traversal, we perform the following three operations:

1. Visit the node
2. Traverse the left subtree in preorder
3. Traverse the right subtree in preorder

In Order Traversal,we perform the following three operations:

1. Traverse the left subtree in inorder
2. Visit the root
3. Traverse the right subtree in inorder.

 6

Advanced Trees In Post Order Traversal, we perform the following three operations:

1. Traverse the left subtree in postorder
2. Traverse the right subtree in postorder
3. Visit the root

 Consider the BST of Figure 7.1

G L P

M
U

S

F

J

K

Figure 7.1: A Binary Search Tree(BST)

The following are the results of traversing the BSTof Figure 7.1:

Preorder : K J F G S M L P U
Inorder : F G J K L M P S U
Postorder: G F J L P M U S K

7.2.2 Insertion of a node into a Binary Search Tree

A binary search tree is constructed by the repeated insertion of new nodes into a
binary tree structure.

Insertion must maintain the order of the tree. The value to the left of a given node
must be less than that node and value to the right must be greater.

In inserting a new node, the following two tasks are performed :

• Tree is searched to determine where the node is to be inserted.
• On completion of search, the node is inserted into the tree

Example: Consider the BST of Figure 7.2 After insertion of a new node consisting
of value 5, the BST of Figure 7.3 results.

15

3

7

10

Figure 7.2: A non-empty
7

Graph Algorithms and
Searching Techniques

10

15 7

5

3

7.2.3 Deletion of a node from a Binary Search Tree

Figure 7.3: Figure 7.2 after insertion of 5

The algorithm to delete a node with key from a binary search tree is not simple where
as many cases needs to be considered.

• If the node to be deleted has no sons, then it may be deleted without further
adjustment to the tree.

• If the node to be deleted has only one subtree, then its only son can be moved
up to take its place.

• The node p to be deleted has two subtrees, then its inorder successor s must
take its place. The inorder successor cannot have a left subtree. Thus, the
right son of s can be moved up to take the place of s.

Example: Consider the following cases in which node 5 needs to be deleted.

1. The node to be deleted has no children.

15

10

157

10

 2. The node has one child

7

10

155

10

7

15

 3. The node to be deleted has two children. This case is complex. The order

of the binary tree must be kept intact.

 8

Advanced Trees Check Your Progress 1

1) What are the different ways of traversing a Binary Search Tree?

…………………………………………………………………………………
…………………………………………………………………………………

2) What are the major features of a Binary Search Tree?
…………………………………………………………………………………
…………………………………………………………………………………

7.3 AVL TREES

An AVL tree is a binary search tree which has the following properties:

• The sub-tree of every node differs in height by at most one.
• Every sub tree is an AVL tree.

Figure 7.4 depicts an AVL tree.

Figure 7.4 : Balance requirement for an AVL tree: the left and right subtree differ by at
most one in height

AVL stands for the names of G.M. Adelson – Velskii and E.M. Landis, two Russian
mathematicians, who came up with this method of keeping the tree balanced.

An AVL tree is a binary search tree which has the balance property and in addition to
its key, each node stores an extra piece of information: the current balance of its
subtree. The three possibilities are:

 Left – HIGH (balance factor -1)
 The left child has a height that is greater than the right child by 1.

 BALANCED (balance factor 0)
 Both children have the same height

 RIGHT – HIGH (balance factor +1)
 The right child has a height that is greater by 1.

An AVL tree which remains balanced guarantees O(log n) search time, even in
the worst case. Here, n is the number of nodes. The AVL data structure achieves
this property by placing restrictions on the difference in heights between the sub-
trees of a given node and rebalancing the tree even if it violates these restrictions.

7.3.1 Insertion of a node into an AVL tree

Nodes are initially inserted into an AVL tree in the same manner as an ordinary
binary search tree.

9

However, the insertion algorithm for an AVL tree travels back along the path it
took to find the point of insertion and checks the balance at each node on the path.

Graph Algorithms and
Searching Techniques

If a node is found that is unbalanced (if it has a balance factor of either -2 or +2)
then rotation is performed, based on the inserted nodes position relative to the
node being examined (the unbalanced node).

7.3.2 Deletion of a node from an AVL tree

The deletion algorithm for AVL trees is a little more complex as there are several
extra steps involved in the deletion of a node. If the node is not a leaf node, then
it has at least one child. Then the node must be swapped with either its in-order
successor or predecessor. Once the node has been swapped, we can delete it.

If a deletion node was originally a leaf node, then it can simply be removed.

As done in insertion, we traverse back up the path to the root node, checking the
balance of all nodes along the path. If unbalanced, then the respective node is
found and an appropriate rotation is performed to balance that node.

7.3.3 AVL tree rotations

AVL trees and the nodes it contains must meet strict balance requirements to
maintain O(log n) search time. These balance restrictions are maintained using
various rotation functions.

The four possible rotations that can be performed on an unbalanced AVL tree are
given below. The before and after status of an AVL tree requiring the rotation are
shown (refer to Figures 7.5, 7.6, 7.7 and 7.8).

h

h+1

T1

O

rO

hh T3 T2

x

T1

T2

+1

h

x

T3

+2

h

h+1

 Figure 7.5: LL Rotation

 10

Advanced Trees

r

h+1
T3

h T2 T1 h

O

r

x
O

h

-1

-2

x

T3
T2

T1

h

h

h+1

Figure 7.6: RR Rotation

Figure 7.7: LR Rotation

x

w

T4 T3 T2 T1

r

O

h

h
w

T3

T4

r

h T1

T2

x

+1

+2

h

h

h

h h

r

w

T4 T3 T2 T1

x

O

+1

Th

-2

h

w

T3

r

T1

T2

x

h

Figure 7.8: RL Rotation
11

Example: (Single rotation in AVL tree, when a new node is inserted into the
AVL tree (LL Rotation)) (refer to Figure 7.9).

Graph Algorithms and
Searching Techniques

8

7

C

 7

8
A

B

A

B

C

Figure 7.9: LL Rotation

The rectangles marked A, B and C are trees of equal height. The shaded rectangle
stands for a new insertion in the tree C. Before the insertion, the tree was balanced,
for the right child was taller then the left child by one.

The balance was broken when we inserted a node into the right child of 7, since the
difference in height became 7.

To fix the balance we make 8 the new root, make c the right child move the old root
(7) down to the left together with its left subtree A and finally move subtree B across
and make it the new right child of 7.

Example: (Double left rotation when a new node is inserted into the AVL tree (RL
rotation)) (refer to Figure 7.10 (a),(b),(c)).

8

9

C

D

B

A

7

(a)

 12

Advanced Trees

 (b) (c)

9

D

C

B

A

8

7 8

7

A

D

C

B

9

Figure 7.10: Double left rotation when a new node is inserted into the AVL tree

A node was inserted into the subtree C, making the tree off balance by 2 at the root.
We first make a right rotation around the node 9, placing the C subtree into the left
child of 9.

Then a left rotation around the root brings node 9 (together with its children) up a
level and subtree A is pushed down a level (together with node 7). As a result we get
correct AVL tree equal balance.

An AVL tree can be represented by the following structure:
struct avl {
 struct node *left;
 int info;
 int bf;
 struct node *right;
};

bf is the balance factor, info is the value in the node.

7.3.4 Applications of AVL Trees

AVL trees are applied in the following situations:

• There are few insertion and deletion operations
• Short search time is needed
• Input data is sorted or nearly sorted

AVL tree structures can be used in situations which require fast searching. But, the
large cost of rebalancing may limit the usefulness.

13

Consider the following: Graph Algorithms and

Searching Techniques
1. A classic problem in computer science is how to store information

dynamically so as to allow for quick look up. This searching problem arises
often in dictionaries, telephone directory, symbol tables for compilers and
while storing business records etc. The records are stored in a balanced
binary tree, based on the keys (alphabetical or numerical) order. The
balanced nature of the tree limits its height to O (log n), where n is the number
of inserted records.

2. AVL trees are very fast on searches and replacements. But, have a moderately

high cost for addition and deletion. If application does a lot more searches
and replacements than it does addition and deletions, the balanced (AVL)
binary tree is a good choice for a data structure.

3. AVL tree also has applications in file systems.

 Check Your Progress 2

1) Define the structure of an AVL tree.

…………………………………………………………………………
…………………………………………………………………………

7.4 B – TREES

B-trees are special m–ary balanced trees used in databases because their structure
allows records to be inserted, deleted and retrieved with guaranteed worst case
performance.

A B-Tree is a specialised multiway tree. In a B-Tree each node may contain a large
number of keys. The number of subtrees of each node may also be large. A B-Tree is
designed to branch out in this large number of directions and to contain a lot of keys
in each node so that height of the tree is relatively small.

This means that only a small number of nodes must be read from disk to retrieve an
item.

A B-Tree of order m is multiway search tree of order m such that

• All leaves are on the bottom level
• All internal nodes (except root node) have atleast m/2 (non empty) children
• The root node can have as few as 2 children if it is an internal node and can

have no children if the root node is a leaf node
• Each leaf node must contain atleast (m/2) – 1 keys.

The following is the structure for a B-tree :

 struct btree

 { int count; // number of keys stored in the current node
 item_type key[3]; // array to hold 3 keys
 long branch [4]; // array of fake pointers (records numbers)
 };

Figure 7.11 depicts a B-tree of order 5.

 14

Advanced Trees
M

 E H P T X

 I K L F G N O Q S V W B D Y Z

Figure 7.11: A B-tree of order 5

7.4.1 Operations on B-Trees

The following are various operations that can be performed on B-Trees:

• Search
• Create
• Insert

B-Tree strives to minimize disk access and the nodes are usually stored on disk

All the nodes are assumed to be stored in secondary storage rather than primary
storage. All references to a given node are preceded by a read operation. Similarly,
once a node is modified and it is no longer needed, it must be written out to secondary
storage with write operation.

The following is the algorithm for searching a B-tree:

B-Tree Search (x, k)

 i < - 1
 while i < = n [x] and k > keyi[x]
 do i ← i + 1
 if i < = n [x] and k = key1 [x]
 then return (x, i)
 if leaf [x]
 then return NIL
 else Disk – Read (ci[x])
 return B – Tree Search (Ci[x], k)

The search operation is similar to binary tree. Instead of choosing between a left and
right child as in binary tree, a B-tree search must make an n-way choice.

15

The correct child is chosen by performing a linear search of the values in the node.
After finding the value greater than or equal to desired value, the child pointer to the
immediate left to that value is followed.

Graph Algorithms and
Searching Techniques

The exact running time of search operation depends upon the height of the tree.

The following is the algorithm for the creation of a B-tree:

B-Tree Create (T)

 x ← Allocate-Node ()
 Leaf [x] ← True
 n [x] ← 0
 Disk-write (x)
 root [T] ← x

The above mentioned algorithm creates an empty B-tree by allocating a new root that
has no keys and is a leaf node.

The following is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

 r ← root (T)
 if n[r] = 2t – 1
 then S ← Allocate-Node ()
 root[T] ← S
 leaf [S] ← FALSE
 n[S] ← 0
 C1 ← r
 B–Tree-Split-Child (s, I, r)
 B–Tree-Insert-Non full (s, k)
 else
 B – Tree-Insert-Non full (r, k)

To perform an insertion on B-tree, the appropriate node for the key must be located.
Next, the key must be inserted into the node.

If the node is not full prior to the insertion, then no special action is required.

If node is full, then the node must be split to make room for the new key. Since
splitting the node results in moving one key to the parent node, the parent node must
not be full. Else, another split operation is required.

This process may repeat all the way up to the root and may require splitting the root
node.

Example:Insertion of a key 33 into a B-Tree (w/split) (refer to Figure 7.12)

Step 1: Search first node for key nearest to 33. Key 30 was found.

32 35 36 41 53 21 27 12 15 17 192 4 6

10 20 30

 16

Advanced Trees Step 2: Node pointed by key 30, is searched for inserting 33. Node is split and 36 is
shifted upwards.

32 35 41 53 36 21 2712 15 17 19 2 4 6

10 20 30

Step 3: Key 33 is inserted between 32 and 35.

41 53 32 35 33 21 2712 15 17 19 2 4 6

10 20 30 36

Figure 7.12 : A B-tree

Deletion of a key from B-tree is possible, but care must be taken to ensure that the
properties of b-tree are maintained if the deletion reduces the number of keys in a
node below the minimum degree of tree, this violation must be connected by
combining several nodes and possibly reducing the height if the tree. If the key has
children, the children must be rearranged.

Example (Searching of a B – Tree for key 21(refer to Figure 7.13))

Step 1: Search for key 21 in first node. 21 is between 20 and 30.

32 35 36 41 53 21 27 12 15 17 19 2 4 6

10 20 30

Step2 : Searching is conducted on the nodes connected by 30.

32 35 36 41 53 27 2112 15 17 19 2 4 6

10 20 30

Figure 7.13 : A B-tree
17

7.4.2 Applications of B-trees Graph Algorithms and

Searching Techniques
A database is a collection of data organised in a fashion that facilitates updation,
retrieval and management of the data. Searching an unindexed database containing n
keys will have a worst case running time of O (n). If the same data is indexed with a
b-tree, then the same search operation will run in O(log n) time. Indexing large
amounts of data can significantly improve search performance.

 Check Your Progress 3

1) Create a B – Tree of order 5 for the following:
 CNGAHEKQMSWLTZDPRXYS
 …………………………………………………………………………………....
 ……………………………………………………………………………………

2) Define a multiway tree of order m.
 ………………………………………………………………………………….
 ……………………………………………………………………………………

7.5 SUMMARY

In this unit, we discussed Binary Search Trees, AVL trees and B-trees.

The striking feature of Binary Search Trees is that all the elements of the left subtree
of the root will be less than those of the right subtree. The same rule is applicable for
all the subtrees in a BST. An AVL tree is a Height balanced tree. The heights of
left and right subtrees of root of an AVL tree differ by 1. The same rule is applicable
for all the subtrees of the AVL tree. A B-tree is a m-ary binary tree. There can be
multiple elements in each node of a B-tree. B-trees are used extensively to insert ,
delete and retrieve records from the databases.

7.6 SOLUTIONS/ANSWERS

Check Your Progress 1

1) preorder, postorder and inorder
2) The major feature of a Binary Search Tree is that all the elements whose values

is less than the root reside in the nodes of left subtree of the root and all the
elements whose values are larger than the root reside in the nodes of right
subtree of the root. The same rule is applicable to all the left and right subtrees
of a BST.

Check Your Progress 2

1) The following is the structure of an AVL tree:

struct avl {
 struct node *left;
 int info;
 int bf;
 struct node *right;
};

 18

19

Advanced Trees Check Your Progress 3

1)

Z Y X WSRPNL K H

F E

C A

TQ

G D

M

2) A multiway tree of order n is an ordered tree where each node has at most m

children. For each node, if k is the actual no. of children in the node, then k-1 is the
number of keys in the node. If the keys and subtrees are arranged in the fashion of a
search tree, then this is multiway search tree of order m.

7.7 FURTHER READINGS

1. Data Structures using C and C ++ by Yedidyah Hangsam, Moshe J.

Augenstein and Aaron M. Tanenbaum, PHI Publications.

2. Fundamentals of Data Structures in C by R.B. Patel, PHI Publications.

Reference Websites

http:// www.cs.umbc.edu
http://www.fredosaurus.com

http://www.csi.edu/
http://www.fredosaurus.com/

Gr aph Algorithms and
Searching Techniques UNIT 8 GRAPHS

Structure Page Nos.

8.0 Introduction 20
8.1 Objectives 20
8.2 Definitions 20
8.3 Shortest Path Algorithms 23

8.3.1 Dijkstra’s Algorithm
8.3.2 Graphs with Negative Edge costs
8.3.3 Acyclic Graphs
8.3.4 All Pairs Shortest Paths Algorithm

8.4 Minimum cost Spanning Trees 30
8.4.1 Kruskal’s Algorithm
8.4.2 Prims’s Algorithm

 8.4.3 Applications
8.5 Breadth First Search 34
8.6 Depth First Search 34
8.7 Finding Strongly Connected Components 36
8.8 Summary 38
8.9 Solutions/Answers 39
8.10 Further Readings 39

8.0 INTRODUCTION

In this unit, we will discuss a data structure called Graph. In fact, graph is a general
tree with no parent-child relationship. Graphs have many applications in computer
science and other fields of science. In general, graphs represent a relatively less
restrictive relationship between the data items. We shall discuss about both undirected
graphs and directed graphs. The unit also includes information on different algorithms
which are based on graphs.

8.1 OBJECTIVES

After going through this unit, you should be able to

• know about graphs and related terminologies;

• know about directed and undirected graphs along with their representations;

• know different shortest path algorithms;

• construct minimum cost spanning trees;

• apply depth first search and breadth first search algorithms, and

• finding strongly connected components of a graph.

8.2 DEFINITIONS

A graph G may be defined as a finite set V of vertices and a set E of edges (pair of
connected vertices). The notation used is as follows:

Graph G = (V, E)
Consider the graph of Figure 8.1.

 20

Graphs The set of vertices for the graph is V = {1, 2, 3, 4, 5}.

The set of edges for the graph is E = {(1,2), (1,5), (1,3), (5,4), (4,3), (2,3) }.

The elements of E are always a pair of elements.

 2

3
1

4 5

 Figure 8.1: A graph

It may be noted that unlike nodes of a tree, graph has a very limited relationship
between the nodes (vertices). There is no direct relationship between the vertices 1
and 4 although they are connected through 3.

Directed graph and Undirected graph: If every edge (a,b) in a graph is marked by a
direction from a to b, then we call it a Directed graph (digraph). On the other hand, if
directions are not marked on the edges, then the graph is called an Undirected graph.

In a Directed graph, the edges (1,5) and (5,1) represent two different edges whereas in
an Undirected graph, (1,5) and (5,1) represent the same edge. Graphs are used in
various types of modeling. For example, graphs can be used to represent connecting
roads between cities.

Graph terminologies :

Adjacent vertices: Two vertices a and b are said to be adjacent if there is an edge
connecting a and b. For example, in Figure 8.1, vertices 5 and 4 are adjacent.

Path: A path is defined as a sequence of distinct vertices, in which each vertex is
adjacent to the next. For example, the path from 1 to 4 can be defined as a sequence of
adjacent vertices (1,5), (5,4).

A path, p, of length, k, through a graph is a sequence of connected vertices:

p = <v0,v1,...,vk>

Cycle : A graph contains cycles if there is a path of non-zero length through the graph,
p = <v0,v1,...,vk> such that v0 = vk.

Edge weight : It is the cost associated with edge.

Loop: It is an edge of the form (v,v).

Path length : It is the number of edges on the path.

Simple path : It is the set of all distinct vertices on a path (except possibly first and
last).

Spanning Trees: A spanning tree of a graph, G, is a set of |V|-1 edges that connect all
vertices of the graph.

 21

Graph Algorithms and
Searching Techniques

There are different representations of a graph. They are:

• Adjacency list representation
• Adjacency matrix representation

Adjacency list representation

An Adjacency list representation of a Graph G = {V, E} consists of an array of
adjacency lists denoted by adj of V list. For each vertex uєV, adj[u] consists of all
vertices adjacent to u in the graph G.

Consider the graph of Figure 8.2.

 Figure 8.2: A Graph

The following is the adjacency list representation of graph of Figure 8.2:

adj [1] = {2, 3, 5}
adj [2] = {1, 4}
adj [3] = {1, 4, 5}
adj [4] = {2, 3, 5}
adj [5] = {1, 3, 4}

An adjacency matrix representation of a Graph G=(V, E) is a matrix A(aij) such that

aij = 1 if edge (i, j) belongs to E
 0 otherwise

1 2

3 4

5

The adjacency matrix for the graph of Figure 8.2 is given below:

1 2 3 4 5
1 0 1 1 0 1

2 1 0 0 1 1

3 1 0 0 1 1

4 0 1 1 0 1

5 1 0 1 1 0
Observe that the matrix is symmetric along the main diagonal. If we define the
adjacency matrix as A and the transpose as AT , then for an undirected graph G as
above, A = AT.

 22

Graphs Graph connectivity :

A connected graph is a graph in which path exists between every pair of vertices.

A strongly connected graph is a directed graph in which every pair of distinct vertices
are connected with each other.

A weakly connected graph is a directed graph whose underlying graph is connected,
but not strongly connected.

A complete graph is a graph in which there exists edge between every pair of vertices.

 Check Your Progress 1

1) A graph with no cycle is called _______ graph.
2) Adjacency matrix of an undirected graph is __________ on main diagonal.
3) Represent the following graphs(Figure 8.3 and Figure 8.4) by adjacency matrix:

4 3

2 1

 Figure 8.3: A Directed Graph

1

4 3

2

Figure 8.4: A Graph

8.3 SHORTEST PATH ALGORITHMS

A driver takes shortest possible route to reach destination. The problem that we will
discuss here is similar to this kind of finding shortest route in a graph. The graphs are
weighted directed graphs. The weight could be time, cost, losses other than distance
designated by numerical values.

Single source shortest path problem : To find a shortest path from a single source to
every vertex of the Graph.

Consider a Graph G = (V, E). We wish to find out the shortest path from a single
source vertex sєV, to every vertex vєV. The single source shortest path algorithm
(Dijkstra’s Algorithm) is based on assumption that no edges have negative weights.

 23

Graph Algorithms and
Searching Techniques

The procedure followed to find shortest path are based on a concept called relaxation.
This method repeatedly decreases the upper bound of actual shortest path of each
vertex from the source till it equals the shortest-path weight. Please note that shortest
path between two vertices contains other shortest path within it.

8.3.1 Dijkstra’s Algorithm

Djikstra’s algorithm (named after its discover, Dutch computer scientist E.W.
Dijkstra) solves the problem of finding the shortest path from a point in a graph (the
source) to a destination with non-negative weight edge.

It turns out that one can find the shortest paths from a given source to all vertices
(points) in a graph in the same time. Hence, this problem is sometimes called the
single-source shortest paths problem. Dijkstra’s algorithm is a greedy algorithm,
which finds shortest path between all pairs of vertices in the graph. Before describing
the algorithms formally, let us study the method through an example.

3
1 2

6 1
 9

8 4 3

66

5

Figure 8.5: A Directed Graph with no negative edge(s)

Dijkstra’s algorithm keeps two sets of vertices:

S is the set of vertices whose shortest paths from the source
have already been determined

 Q = V-S is the set of remaining vertices .
The other data structures needed are:

d array of best estimates of shortest path to each vertex from the
source

pi an array of predecessors for each vertex. predecessor is an array
of vertices to which shortest path has already been determined.

The basic operation of Dijkstra’s algorithm is edge relaxation. If there is an edge from
u to v, then the shortest known path from s to u can be extended to a path from s to v
by adding edge (u,v) at the end. This path will have length d[u]+w(u,v). If this is less
than d[v], we can replace the current value of d[v] with the new value.

The predecessor list is an array of indices, one for each vertex of a graph. Each vertex
entry contains the index of its predecessor in a path through the graph.

 24

Graphs Operation of Algorithm

The following sequence of diagrams illustrate the operation of Dijkstra’s Algorithm.
The bold vertices indicate the vertex to which shortest path has been determined.

Initialize the graph, all the vertices have infinite
costs except the source vertex which has zero cost

From all the adjacent vertices, choose the closest
vertex to the source s.

As we initialized d[s] to 0, it’s s. (shown in bold
circle)

Add it to S

Relax all vertices adjacent to s, i.e u and x

Update vertices u and x by 10 and 5 as the
distance from s.

Choose the nearest vertex, x.

Relax all vertices adjacent to x

Update predecessors for u, v and y.
Predecessor of x = s
Predecessor of v = x ,s
Predecessor of y = x ,s

add x to S

Now y is the closest vertex. Add it to S.

Relax v and adjust its predecessor.

 25

Graph Algorithms and
Searching Techniques

u is now closest, add it to S and adjust its adjacent
vertex, v.

Finally, add v to S.

The predecessor list now defines the shortest path
from each node to s.

Dijkstra’s algorithm

 * Initialise d and pi*
for each vertex v in V(g)
 g.d[v] := infinity
 g.pi[v] := nil
 g.d[s] := 0;
* Set S to empty *
S := { 0 }
Q := V(g)
* While (V-S) is not null*
while not Empty(Q)

1. Sort the vertices in V-S according to the current best estimate of
their distance from the source
u := Extract-Min (Q);

2. Add vertex u, the closest vertex in V-S, to S,

AddNode(S, u);

3. Relax all the vertices still in V-S connected to u
relax(Node u, Node v, double w[][])

 if d[v] > d[u] + w[u]v] then
 d[v] := d[u] + w[u][v]
 pi[v] := u

In summary, this algorithm starts by assigning a weight of infinity to all vertices, and
then selecting a source and assigning a weight of zero to it. Vertices are added to the
set for which shortest paths are known. When a vertex is selected, the weights of its
adjacent vertices are relaxed. Once all vertices are relaxed, their predecessor’s vertices

 26

Graphs are updated (pi). The cycle of selection, weight relaxation and predecessor update is

repeated until the shortest path to all vertices has been found.

Complexity of Algorithm

The simplest implementation of the Dijkstra’s algorithm stores vertices of set Q in an
ordinary linked list or array, and operation Extract-Min(Q) is simply a linear search
through all vertices in Q. In this case, the running time is Θ(n2).

8.3.2 Graphs with Negative Edge costs

We have seen that the above Dijkstra’s single source shortest-path algorithm works
for graphs with non-negative edges (like road networks). The following two scenarios
can emerge out of negative cost edges in a graph:

• Negative edge with non- negative weight cycle reachable from the source.

• Negative edge with non-negative weight cycle reachable from source.

S B

10

5 A

5
5 0

─3

 Figure 8.6 : A Graph with negative edge and non-negative weight cycle

The net weight of the cycle is 2(non-negative)(refer to Figure 8.6).

─ 8
5

10 5 0

A B 5
S

Figure 8.7: A graph with negative edge and negative weight cycle

The net weight of the cycle is ─3(negative) (refer to Figure 8.7). The shortest path
from A to B is not well defined as the shortest path to this vertex are infinite, i.e., by
traveling each cycle we can decrease the cost of the shortest path by 3, like (S, A, B)
is path (S, A, B, A, B) is a path with less cost and so on.

Dijkstra’s Algorithm works only for directed graphs with non-negative weights (cost).

8.3.3 Acyclic Graphs

A path in a directed graph is said to form a cycle is there exists a path (A,B,C,…..P)
such that A = P. A graph is called acyclic if there is no cycle in the graph.

 27

Graph Algorithms and
Searching Techniques 8.3.4 All Pairs Shortest Paths Algorithm

In the last section, we discussed about shortest path algorithm which starts with a
single source and finds shortest path to all vertices in the graph. In this section, we
shall discuss the problem of finding shortest path between all pairs of vertices in a
graph. This problem is helpful in finding distance between all pairs of cities in a road
atlas. All pairs shortest paths problem is mother of all shortest paths problems.

In this algorithm, we will represent the graph by adjacency matrix.

The weight of an edge Cij in an adjacency matrix representation of a directed graph is
represented as follows

0 if i = j
 weight of the directed edge from i to j i.e (i,j) if i ≠ j and (i j) belongs to
E
Cij = ∞ if i ≠ j and (i, j) does not belong to E

Given a directed graph G = (V, E), where each edge (v, w) has a non-negative cost
C(v , w), for all pairs of vertices (v, w) to find the lowest cost path from v to w.

The All pairs shortest paths problem can be considered as a generalisation of single-
source-shortest-path problem, by using Dijkstra’s algorithm by varying the source
node among all the nodes in the graph. If negative edge(s) is allowed, then we can’t
use Dijkstra’s algorithm.

In this section we shall use a recursive solution to all pair shortest paths problem
known as Floyd-Warshall algorithm, which runs in O(n3) time.

This algorithm is based on the following principle. For graph G let V = {1, 2,
3,…,n}.Let us consider a sub set of the vertices {1, 2, 3, …..,k. For any pair of
vertices that belong to V, consider all paths from i to j whose intermediate vertices are
from {1, 2, 3, ….k}. This algorithm will exploit the relationship between path p and
shortest path from i to j whose intermediate vertices are from {1, 2, 3, ….k-1} with
the following two possibilities:

1. If k is not an intermediate vertex in the path p, then all the intermediate
vertices of the path p are in {1, 2, 3, ….,k-1}. Thus, shortest path from i to j
with intermediate vertices in {1, 2, 3, ….,k-1} is also the shortest path from i
to j with vertices in {1, 2, 3, …, k}.

2. If k is an intermediate vertex of the path p, we break down the path p into path

p1 from vertex i to k and path p2 from vertex k to j. So, path p1 is the shortest
path from i to k with intermediate vertices in {1, 2, 3, …,k-1}.

During iteration process we find the shortest path from i to j using only vertices (1, 2,
3, …, k-1} and in the next step, we find the cost of using the kth vertex as an
intermediate step. If this results in lower cost, then we store it.

After n iterations (all possible iterations), we find the lowest cost path from i to j using
all vertices (if necessary).

Note the following:

Initialize the matrix

 28

Graphs C[i][j] = ∞ if (i, j) does not belong to E for graph G = (V, E)

Initially, D[i][j] = C[i][j]

We also define a path matrix P where P[i][j] holds intermediate vertex k on the least
cost path from i to j that leads to the shortest path from i to j .

Algorithm (All Pairs Shortest Paths)

N = number of rows of the graph
D[i[j] = C[i][j]
For k from 1 to n
 Do for i = 1 to n
 Do for j = 1 to n
 D[i[j]= minimum(dij

(k-1) , dik
(k-1) + dkj

(k-1)))
 Enddo
 Enddo
Enddo

where dij

(k-1) = minimum path from i to j using k-1 intermediate vertices
where dik

(k-1) = minimum path from j to k using k-1 intermediate vertices
where dkj

(k-1) = minimum path from k to j using k-1 intermediate vertices

Program 8.1 gives the program segment for the All pairs shortest paths algorithm.

AllPairsShortestPaths(int N, Matrix C, Matrix P, Matrix D)
{

int i, j, k

if i = j then C[i][j] = 0
for (i = 0; i < N; i++)
{
 for (j = 0; j < N; j++)

 {
 D[i][j] = C[i][j];
 P[i][j] = -1;
 }

 D[i][j] = 0;
}

for (k=0; k<N; k++)

 {
 for (i=0; i<N; i++)
 {
 for (j=0; J<N; J++)
 {
 if (D[i][k] + D[k][j] < D[i][j])
 {
 D[i][j] = D[i][k] + D[k][j];
 P[i][j] = k;
 }
 }
 }
 }
}

/*********** End *************/

 29

Graph Algorithms and
Searching Techniques

Program 8.1 : Program segment for All pairs shortest paths algorithm

From the above algorithm, it is evident that it has O(N3) time complexity.

Shortest path algorithms had numerous applications in the areas of Operations
Research, Computer Science, Electrical Engineering and other related areas.

 Check Your Progress 2

1) _________ is the basis of Dijkstra’s algorithm

2) What is the complexity of All pairs shortest paths algorithm?

…………………………………………………………………………………………..

8.4 MINIMUM COST SPANNING TREES

A spanning tree of a graph is just a subgraph that contains all the vertices and is a tree
(with no cycle). A graph may have many spanning trees.

 Figure 8.8: A Graph

Figure 8.9 : Spanning trees of the Graph of Figure 8.9

Consider the graph of Figure 8.8. It’s spanning trees are shown in Figure 8.9.
Now, if the graph is a weighted graph (length associated with each edge). The weight
of the tree is just the sum of weights of its edges. Obviously, different spanning trees
have different weights or lengths. Our objective is to find the minimum length
(weight) spanning tree.

Suppose, we have a group of islands that we wish to link with bridges so that it is
possible to travel from one island to any other in the group. The set of bridges which
will enable one to travel from any island to any other at minimum capital cost to the
government is the minimum cost spanning tree.

8.4.1 Kruskal’s Algorithm

Krushkal’s algorithm uses the concept of forest of trees. Initially the forest consists of
n single node trees (and no edges). At each step, we add one (the cheapest one) edge
so that it links two trees together. If it forms a cycle, it would simply mean that it links
two nodes that were already connected. So, we reject it.

 30

Graphs The steps in Kruskal’s Algorithm are as follows:

1. The forest is constructed from the graph G - with each node as a separate tree
in the forest.

2. The edges are placed in a priority queue.
3. Do until we have added n-1 edges to the graph,

1. Extract the cheapest edge from the queue.
2. If it forms a cycle, then a link already exists between the concerned

nodes. Hence reject it.
3. Else add it to the forest. Adding it to the forest will join two trees

together.

The forest of trees is a partition of the original set of nodes. Initially all the trees have
exactly one node in them. As the algorithm progresses, we form a union of two of the
trees (sub-sets), until eventually the partition has only one sub-set containing all the
nodes.

Let us see the sequence of operations to find the Minimum Cost Spanning Tree(MST)
in a graph using Kruskal’s algorithm. Consider the graph of Figure 8.10., Figure 8.11
shows the construction of MST of graph of Figure 8.10.

12

22
4

9
3

Fig

8

7 6

14

ure 8.10 : A Graph

12

22
4

9 3 8
7 6

14

 Step 1

 31

Graph Algorithms and
Searching Techniques

12 12

2222
4

3
6

4
8 9 3

7
9 8

7 6

14 14

 Step 2 Step 3

12 12

22 22
44 8 9 9 3 3 8

7 7 6 6

14 14

 Step 4 Step 5

Figure 8.11 : Construction of Minimum Cost Spanning Tree for the Graph of Figure 8.10 by

application of Kruskal’s algorithm

The following are various steps in the construction of MST for the graph of
Figure 8.10 using Kruskal’s algorithm.

Step 1 : The lowest cost edge is selected from the graph which is not in MST

(initially MST is empty). The lowest cost edge is 3 which is added to the MST
(shown in bold edges)

Step 2: The next lowest cost edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge which is not in MST is added (edge with cost 6).

Step 4 : The next lowest cost edge which is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge which is not in MST is 8 but will form a cycle. So,

it is discarded . The next lowest cost edge 9 is added. Now the MST contains
all the vertices of the graph. This results in the MST of the original graph.

8.4.2 Prim’s Algorithm

Prim’s algorithm uses the concept of sets. Instead of processing the graph by sorted
order of edges, this algorithm processes the edges in the graph randomly by building
up disjoint sets.
 _
It uses two disjoint sets A and A. Prim’s algorithm works by iterating through the
nodes and then finding the shortest edge from the set A to that of set A (i.e. out side
A), followed by the addition of the node to the new graph. When all the nodes are
processed, we have a minimum cost spanning tree.

Rather than building a sub-graph by adding one edge at a time, Prim’s algorithm
builds a tree one vertex at a time.

 32

Graphs The steps in Prim’s algorithm are as follows:

Let G be the graph with n vertices for which minimum cost spanning tree is to be
generated.

 Let T be the minimum spanning tree.
 Let T be a single vertex x.
 while (T has fewer than n vertices)
 {
 find the smallest edge connecting T to G-T
 add it to T
 }
Consider the graph of Figure 8.10. Figure 8.12 shows the various steps involved in
the construction of Minimum Cost Spanning Tree of graph of Figure 8.10.

12

22
4

9
3 8

7 6

14

 Step 1

12 12

2222

3
6

4

7

9
3

4
9 8 8

6 7

14 14

 Step 2 Step 3

1212

2222
44

9 9 8 8 3 3
7 7 6 6

1414

 Step 4 Step 5

Figure 8.12 : Construction of Minimum Cost Spanning Tree for the Graph of Figure 8.10 by

application of Prim’s algorithm

The following are various steps in the construction of MST for the graph of
Figure 8.10 using Prim’s algorithm.

Step 1 : We start with a single vertex (node). Now the set A contains this single node

and set A contains rest of the nodes. Add the edge with the lowest cost from
A to A. The edge with cost 4 is added.

 33

Graph Algorithms and
Searching Techniques

Step 2: Lowest cost path from shaded portion of the graph to the rest of the graph

(edge with cost 3) is selected and added to MST.

Step 3: Lowest cost path from shaded portion of the graph to the rest of the graph

(edge with cost 6) is selected and added to MST.

Step 4: Lowest cost path from shaded portion of the graph to the rest of the graph

(edge with cost 73) is selected and added to MST.

Step 5: The next lowest cost edge to the set not in MST is 8 but forms a cycle. So, it is

discarded. The next lowest cost edge 9 is added. Now the MST contains all
the vertices of the graph. This results in the MST of the original graph.

Comparison of Kruskal’s algorithm and Prim’s algorithm

 Kruskal’s algorithm Prim’s algorithm
Principle Based on generic minimum cost

spanning tree algorithms
A special case of generic minimum
cost spanning tree algorithm.
Operates like Dijkstra’s algorithm
for finding shortest path in a graph.

Operation Operates on a single set of
edges in the graph

Operates on two disjoint sets of
edges in the graph

Running time O(E log E) where E is the
number of edges in the graph

O(E log V), which is
asymptotically same as Kruskal’s
algorithm

For the above comparison, it may be observed that for dense graphs having more
number of edges for a given number of vertices, Prim’s algorithm is more efficient.

8.4.3 Applications

The minimum cost spanning tree has wide applications in different fields. It represents
many complicated real world problems like:

1. Minimum distance for travelling all cities at most one (travelling salesman
problem).

2. In electronic circuit design, to connect n pins by using n-1 wires, using least
wire.

3. Spanning tree also finds their application in obtaining independent set of
circuit equations for an electrical network.

8.5 BREADTH FIRST SEARCH (BFS)

When BFS is applied, the vertices of the graph are divided into two categories. The
vertices, which are visited as part of the search and those vertices, which are not
visited as part of the search. The strategy adopted in breadth first search is to start
search at a vertex(source). Once you started at source, the number of vertices that are
visited as part of the search is 1 and all the remaining vertices need to be visited.
Then, search the vertices which are adjacent to the visited vertex from left to order. In
this way, all the vertices of the graph are searched.

Consider the digraph of Figure 8.13. Suppose that the search started from S. Now, the
vertices (from left to right) adjacent to S which are not visited as part of the search are
B, C, A. Hence, B,C and A are visited after S as part of the BFS. Then, F is the
unvisited vertex adjacent to B. Hence, the visit to B, C and A is followed by F. The
unvisited vertex adjacent of C is D. So, the visit to F is followed by D. There are no

 34

Graphs unvisited vertices adjacent to A. Finally, the unvisited vertex E adjacent to D is

visited.

Hence, the sequence of vertices visited as part of BFS is S, B, C, A, F, D and E.

8.6 DEPTH FIRST SEARCH (DFS)

The strategy adopted in depth first search is to search deeper whenever possible. This
algorithm repeatedly searches deeper by visiting unvisited vertices and whenever an
unvisited vertex is not found, it backtracks to previous vertex to find out whether there
are still unvisited vertices.

As seen, the search defined above is inherently recursive. We can find a very simple
recursive procedure to visit the vertices in a depth first search. The DFS is more or
less similar to pre-order tree traversal. The process can be described as below:

Start from any vertex (source) in the graph and mark it visited. Find vertex that is
adjacent to the source and not previously visited using adjacency matrix and mark it
visited. Repeat this process for all vertices that is not visited, if a vertex is found
visited in this process, then return to the previous step and start the same procedure
from there.

If returning back to source is not possible, then DFS from the originally selected
source is complete and start DFS using any unvisited vertex.

S A

C

E

DB

F

 Figure 8.13 : A Digraph

Consider the digraph of Figure 8.13. Start with S and mark it visited. Then visit the
next vertex A, then C and then D and at last E. Now there are no adjacent vertices of E
to be visited next. So, now, backtrack to previous vertex D as it also has no unvisited
vertex. Now backtrack to C, then A, at last to S. Now S has an unvisited vertex B.
Start DFS with B as a root node and then visit F. Now all the nodes of the graph are
visited.

Figure 8.14 shows a DFS tree with a sequence of visits. The first number indicates the
time at which the vertex is visited first and the second number indicates the time at
which the vertex is visited during back tracking.

 35

aph Algorithms and

ching Techniques
Gr
Sear

2/9

3/8

5/61/10

11/14 4/7

12/13

Figure 8.14 : DFS tree of digraph of Figure 8.13

The DFS forest is shown with shaded arrow in Figure 8.14.

Algorithm for DFS

Step 1: Select a vertex in the graph and make it the source vertex and mark it visited.

Step 2: Find a vertex that is adjacent to the souce vertex and start a new search if it is

not already visited.

Step 3: Repeat step 2 using a new source vertex. When all adjacent vertices are

visited, return to previous source vertex and continue search from there.

If n is the number of vertices in the graph and the graph is represented by an
adjacency matrix, then the total time taken to perform DFS is O(n2). If G is
represented by an adjacency list and the number of edges of G are e, then the time
taken to perform DFS is O(e).

8.7 FINDING STRONGLY CONNECTED
COMPONENTS

A beautiful application of DFS is finding a strongly connected component of a graph.

Definition: For graph G = (V, E) , where V is the set of vertices and E is the set of
edges, we define a strongly connected components as follows:

U is a sub set of V such that u, v belongs to U such that, there is a path from u to v and
v to u. That is, all pairs of vertices are reachable from each other.

In this section we will use another concept called transpose of a graph. Given a
directed graph G a transpose of G is defined as GT. GT is defined as a graph with the
same number of vertices and edges with only the direction of the edges being
reversed. GT is obtained by transposing the adjacency matrix of the directed graph G.

The algorithm for finding these strongly connected components uses the transpose of
G, GT.

G = (V, E), GT = (V, ET), where ET = { (u, v): (v, u) belongs to E }

 36

Graphs

 Figure 8.15: A Digraph

11/12 1/8 9/14 6/7

3/4 2/5 10/13

Figure 8.16: Transpose and strongly connected components of digraph of Figure 8.15

9/14

3/4 2/5

1/8 6/7 11/12

10/13

Figure 8.15 shows a directed graph with sequence in DFS (first number of the vertex
shows the discovery time and second number shows the finishing time of the vertex
during DFS. Figure 8.16 shows the transpose of the graph in Figure 8.15 whose edges
are reversed. The strongly connected components are shown in zig-zag circle in
Figure 8.16.

To find strongly connected component we start with a vertex with the highest
finishing time and start DFS in the graph GT and then in decreasing order of finishing
time. DFS with vertex with finishing time 14 as root finds a strongly connected
component. Similarly, vertices with finishing times 8 and then 5, when selected as
source vertices also lead to strongly connected components.

Algorithm for finding strongly connected components of a Graph:

Strongly Connected Components (G)

where d[u] = discovery time of the vertex u during DFS , f[u] = finishing time of a
vertex u during DFS, GT = Transpose of the adjacency matrix

Step 1: Use DFS(G) to compute f[u] ∀u∈V
Step 2: Compute GT
Step 3: Execute DFS in GT

 37

Graph Algorithms and
Searching Techniques

Step 4: Output the vertices of each tree in the depth-first forest of Step 3 as a separate
strongly connected component.

 Check Your Progress 3

1) Which graph traversal uses a queue to hold vertices that are to be processed next ?

………………………………………………………………………………………

……………………………………………………………………………………….

2) Which graph traversal is recursive by nature?

………………………………………………………………………………….

……………………………………………………………………………………

3) For a dense graph, Prim’s algorithm is faster than Kruskal’s algorithm
 True/False

4) Which graph traversal technique is used to find strongly connected component
of a graph?
……………………………………………………………………………………

……………………………………………………………………………………

8.8 SUMMARY

Graphs are data structures that consist of a set of vertices and a set of edges that
connect the vertices. A graph where the edges are directed is called directed graph.
Otherwise, it is called an undirected graph. Graphs are represented by adjacency lists
and adjacency matrices. Graphs can be used to represent a road network where the
edges are weighted as the distance between the cities. Finding the minimum distance
between single source and all other vertices is called single source shortest path
problem. Dijkstra’s algorithm is used to find shortest path from a single source to
every other vertex in a directed graph. Finding shortest path between every pair of
vertices is called all pairs shortest paths problem.

A spanning tree of a graph is a tree consisting of only those edges of the graph that
connects all vertices of the graph with minimum cost. Kruskal’s and Prim’s
algorithms find minimum cost spanning tree in a graph. Visiting all nodes in a graph
systematically in some manner is called traversal. Two most common methods are
depth-first and breadth-first searches.

8.9 SOLUTIONS/ANSWERS

Check Your Progress 1

1) an acyclic
2) symmetric
3) The adjacency matrix of the directed graph and undirected graph are as follows:

 0 1 1 0
 0 0 0 0
 0 0 0 1
 1 1 0 0

 (Refer to Figure 8.3)

 38

 39

Graphs
 0 1 1 1
 1 0 0 1
 1 0 0 1
 1 1 1 0

 (Refer to Figure 8.3)

Check Your Progress 2

1) Node relaxation
2) O(N3)

Check Your Progress 3

1) BFS
2) DFS
3) True
4) DFS

8.10 FURTHER READINGS

1. Fundamentals of Data Structures in C++ by E.Horowitz, Sahni and D.Mehta;
Galgotia Publications.

2. Data Structures and Program Design in C by Kruse, C.L.Tonodo and B.Leung;
Pearson Education.

3. Data Structures and Algorithms by Alfred V.Aho; Addison Wesley.

Reference Websites

http://www.onesmartclick.com/engineering/data-structure.html
http://msdn.microsoft.com/vcsharp/programming/datastructures/
http://en.wikipedia.org/wiki/Graph_theory

http://www.onesmartclick.com/engineering/data-structure.html
http://en.wikipedia.org/wiki/Graph_theory

Graph Algorithms and
Searching Techniques

UNIT 9 SEARCHING

Structure Page Nos.
9.0 Introduction 40
9.1 Objectives 40
9.2 Linear Search 41
9.3 Binary Search 44
9.4 Applications 47
9.5 Summary 48
9.6 Solutions / Answers 48
9.7 Further Readings 48

9.0 INTRODUCTION

Searching is the process of looking for something: Finding one piece of data that has
been stored within a whole group of data. It is often the most time-consuming part of
many computer programs. There are a variety of methods, or algorithms, used to
search for a data item, depending on how much data there is to look through, what
kind of data it is, what type of structure the data is stored in, and even where the data
is stored - inside computer memory or on some external medium.

Till now, we have studied a variety of data structures, their types, their use and so on.
In this unit, we will concentrate on some techniques to search a particular data or
piece of information from a large amount of data. There are basically two types of
searching techniques, Linear or Sequential Search and Binary Search.

Searching is very common task in day-to-day life, where we are involved some or
other time, in searching either for some needful at home or office or market, or
searching a word in dictionary. In this unit, we see that if the things are organised in
some manner, then search becomes efficient and fast.

All the above facts apply to our computer programs also. Suppose we have a
telephone directory stored in the memory in an array which contains Name and
Numbers. Now, what happens if we have to find a number? The answer is search that
number in the array according to name (given). If the names were organised in some
order, searching would have been fast.

 So, basically a search algorithm is an algorithm which accepts an argument ‘a’ and
tries to find the corresponding data where the match of ‘a’ occurs in a file or in a
table.

9.1 OBJECTIVES

After going through this unit, you should be able to:

• know the basic concepts of searching;

• know the process of performing the Linear Search;

• know the process of performing the Binary Search and

• know the applications of searching.

 40

Searching

9.2 LINEAR SEARCH
Linear search is not the most efficient way to search for an item in a collection of
items. However, it is very simple to implement. Moreover, if the array elements are
arranged in random order, it is the only reasonable way to search. In addition,
efficiency becomes important only in large arrays; if the array is small, there aren’t
many elements to search and the amount of time it takes is not even noticed by the
user. Thus, for many situations, linear search is a perfectly valid approach.

Before studying Linear Search, let us define some terms related to search.

A file is a collection of records and a record is in turn a collection of fields. A field,
which is used to differentiate among various records, is known as a ‘key’.

For example, the telephone directory that we discussed in previous section can be
considered as a file, where each record contains two fields: name of the person and
phone number of the person.

Now, it depends on the application whose field will be the ‘key’. It can be the name of
person (usual case) and it can also be phone number. We will locate any particular
record by matching the input argument ‘a’ with the key value.

The simplest of all the searching techniques is Linear or Sequential Search. As the
name suggests, all the records in a file are searched sequentially, one by one, for the
matching of key value, until a match occurs.

The Linear Search is applicable to a table which it should be organised in an array. Let
us assume that a file contains ‘n’ records and a record has ‘a’ fields but only one key.
The values of key are organised in an array say ‘m’. As the file has ‘n’ records, the
size of array will be ‘n’ and value at position R(i) will be the key of record at position
i. Also, let us assume that ‘el’ is the value for which search has to be made or it is the
search argument.

Now, let us write a simple algorithm for Linear Search.

Algorithm

Here, m represents the unordered array of elements
 n represents number of elements in the array and
 el represents the value to be searched in the list

Sep 1: [Initialize]
 k=0
 flag=1

Step 2: Repeat step 3 for k=0,1,2…..n-1

Step 3: if (m[k]=el)

then
 flag=0

 print “Search is successful” and element is found at location (k+1)
 stop
 endif

Step 4: if (flag=1) then

print “Search is unsuccessful”

 41

Graph Algorithms and
Searching Techniques

endif

Step 5: stop

Program 9.1 gives the program for Linear Search.

/*Program for Linear Search*/
/*Header Files*/
#include<stdio.h>
#include<conio.h>
/*Global Variables*/
int search;
int flag;
/*Function Declarations*/
int input (int *, int, int);
void linear_search (int *, int, int);
void display (int *, int);
/*Functions */
void linear_search(int m[], int n, int el)
{

int k;
flag = 1;
for(k=0; k<n; k++)
{

 if(m[k]==el
 {

 printf(“\n Search is Successful\n”);
 printf(“\n Element : %i Found at location : %i”, element, k+1);

 flag = 0;
 }
 }
if(flag==1)

printf(“\n Search is unsuccessful”);
}
void display(int m[], int n)
{

 int i;
 for(i=0; i< 20; i++)
 {

 printf(“%d”, m[i];
 }

}
int input(int m[], int n, int el)
{

 int i;
 n = 20;
 el = 30;
 printf(“Number of elements in the list : %d”, n);
 for(i=0;i<20;i++)

{
 m[i]=rand()%100;
}

 printf(“\n Element to be searched :%d”, el);
 search = el;
 return n;
}
/* Main Function*/

 42

Searching void main()

{
int n, el, m[200];
number = input(m, n,el);
el = search;
printf(“\n Entered list as follows: \n”);
display(m, n);
linear_search(m, n, el);
printf(“\n In the following list\n”);
display(m, n);

}

Program 9.1: Linear Search

Program 9.1 examines each of the key values in the array ‘m’, one by one and stops
when a match occurs or the total array is searched.

Example:

A telephone directory with n = 10 records and Name field as key. Let us assume that
the names are stored in array ‘m’ i.e. m(0) to m(9) and the search has to be made for
name “Radha Sharma”, i.e. element = “Radha Sharma”.

Telephone Directory

Name Phone No.
Nitin Kumar 25161234
Preeti Jain 22752345
Sandeep Singh 23405678
Sapna Chowdhary 22361111
Hitesh Somal 24782202
R.S.Singh 26254444
Radha Sharma 26150880
S.N.Singh 25513653
Arvind Chittora 26252794
Anil Rawat 26257149

The above algorithm will search for element = “Radha Sharma” and will stop at 6th
index of array and the required phone number is “26150880”, which is stored at
position 7 i.e. 6+1.

Efficiency of Linear Search

How many number of comparisons are there in this search in searching for a given
element?

The number of comparisons depends upon where the record with the argument key
appears in the array. If record is at the first place, number of comparisons is ‘1’, if
record is at last position ‘n’ comparisons are made.

If it is equally likely for that the record can appear at any position in the array, then, a
successful search will take (n+1)/2 comparisons and an unsuccessful search will take
‘n’ comparisons.

In any case, the order of the above algorithm is O(n).

 43

 44

Graph Algorithms and
Searching Techniques Check Your Progress 1

1) Linear search uses an exhaustive method of checking each element in the array

against a key value. When a match is found, the search halts. Will sorting the
array before using the linear search have any effect on its order of efficiency?

……………………………………………………………………………………

2) In a best case situation, the element was found with the fewest number of
comparisons. Where, in the list, would the key element be located?

……………………………………………………………………………………

9.3 BINARY SEARCH

An unsorted array is searched by linear search that scans the array elements one by
one until the desired element is found.

The reason for sorting an array is that we search the array “quickly”. Now, if the array
is sorted, we can employ binary search, which brilliantly halves the size of the search
space each time it examines one array element.

An array-based binary search selects the middle element in the array and compares its
value to that of the key value. Because, the array is sorted, if the key value is less than
the middle value then the key must be in the first half of the array. Likewise, if the
value of the key item is greater than that of the middle value in the array, then it is
known that the key lies in the second half of the array. In either case, we can, in effect,
“throw out” one half of the search space or array with only one comparison.

Now, knowing that the key must be in one half of the array or the other, the binary
search examines the mid value of the half in which the key must reside. The algorithm
thus narrows the search area by half at each step until it has either found the key data
or the search fails.

As the name suggests, binary means two, so it divides an array into two halves for
searching. This search is applicable only to an ordered table (in either ascending or
in descending order).

Let us write an algorithm for Binary Search and then we will discuss it. The array
consists of elements stored in ascending order.

Algorithm

Step 1: Declare an array ‘k’ of size ‘n’ i.e. k(n) is an array which stores all the keys of

a file containing ‘n’ records

Step 2: i 0

Step 3: low 0, high n-1

Step 4: while (low <= high)do
 mid = (low + high)/2
 if (key=k[mid]) then

write “record is at position”, mid+1 //as the array
starts from the 0th position

 else
 if(key < k[mid]) then
 high = mid - 1

Searching else

 low = mid + 1
 endif
 endif
 endwhile

Step 5: Write “Sorry, key value not found”

Step 6: Stop

Program 9.2 gives the program for Binary Search.

/*Header Files*/
#include<stdio.h>
#include<conio.h>
/*Functions*/
void binary_search(int array[], int value, int size)
{

 int found=0;
int high=size-1, low=0, mid;
mid = (high+low)/2;
printf(“\n\n Looking for %d\n”, value);
while((!found)&&(high>=low))
{

printf(“Low %d Mid%d High%d\n”, low, mid, high);
if(value==array[mid])
{printf(“Key value found at position %d”,mid+1);
 found=1;
}
else
{if (value<array[mid])

high = mid-1;
else

low = mid+1;
mid = (high+low)/2;
}

}
if (found==1
printf(“Search successful”);
else
printf(“Key value not found”);

}
/*Main Function*/
void main(void)
{

int array[100], i;
/*Inputting Values to Array*/
for(i=0;i<100;i++)

 { printf(“Enter the name:”);
 scanf(“%d”, array[i]);
 }

printf(“Result of search %d\n”, binary_searchy(array,33,100));
printf(“Result of search %d\n”, binary_searchy(array, 75,100));
printf(“Result of search %d\n”, binary_searchy(array,1,100));

}
Program 9.2 : Binary Search

 45

Graph Algorithms and
Searching Techniques

Example:

 Let us consider a file of 5 records, i.e., n = 5
And k is a sorted array of the keys of those 5 records.
 k

0 11

 22

 33

 44

 55

1

2

3

4
Let key = 55, low = 0, high = 4

Iteration 1: mid = (0+4)/2 = 2
 k(mid) = k (2) = 33
 Now key > k (mid)
 So low = mid + 1 = 3
Iteration 2: low = 3, high = 4 (low <= high)
 Mid = 3+4 / 2 = 3.5 ~ 3 (integer value)
 Here key > k (mid)
 So low = 3+1 = 4
Iteration 3: low = 4, high = 4 (low<= high)
 Mid = (4+4)/2 = 4
 Here key = k(mid)

So, the record is at mid+1 position, i.e., 5

Efficiency of Binary Search

Each comparison in the binary search reduces the number of possible candidates
where the key value can be found by a factor of 2 as the array is divided in two halves
in each iteration. Thus, the maximum number of key comparisons are approximately
log n. So, the order of binary search is O (log n).

Comparative Study of Linear and Binary Search

Binary search is lots faster than linear search. Here are some comparisons:

NUMBER OF ARRAY ELEMENTS EXAMINED

array size | linear search binary search
 | (avg. case) (worst case)
--
 8 | 4 4
 128 | 64 8
 256 | 128 9
 1000 | 500 11
100,000 | 50,000 18

A binary search on an array is O(log2 n) because at each test, you can “throw out”
one half of the search space or array whereas a linear search on an array is O(n).

It is noteworthy that, for very small arrays a linear search can prove faster than a
binary search. However, as the size of the array to be searched increases, the binary

 46

Searching search is the clear winner in terms of number of comparisons and therefore overall

speed.

Still, the binary search has some drawbacks. First, it requires that the data to be
searched be in sorted order. If there is even one element out of order in the data being
searched, it can throw off the entire process. When presented with a set of unsorted
data, the efficient programmer must decide whether to sort the data and apply a binary
search or simply apply the less-efficient linear search. Is the cost of sorting the data is
worth the increase in search speed gained with the binary search? If you are searching
only once, then it is probably to better do a linear search in most cases.

 Check Your Progress 2

1) State True or False

a. The order of linear search in worst case is O (n/2) True/False
b. Linear search is more efficient than Binary search. True/False
c. For Binary search, the array has to be sorted in ascending order only.

 True/False
2) Write the Binary search algorithm where the array is sorted in descending order.

9.4 APPLICATIONS

The searching techniques are applicable to a number of places in today’s world, may it
be Internet, search engines, on line enquiry, text pattern matching, finding a record
from database, etc.

The most important application of searching is to track a particular record from a large
file, efficiently and faster.

Let us discuss some of the applications of Searching in the world of computers.

1. Spell Checker

This application is generally used in Word Processors. It is based on a program for
checking spelling, which it checks and searches sequentially. That is, it uses the
concept of Linear Search. The program looks up a word in a list of words from a
dictionary. Any word that is found in the list is assumed to be spelled correctly. Any
word that isn’t found is assumed to be spelled wrong.

2. Search Engines

Search engines use software robots to survey the Web and build their databases. Web
documents are retrieved and indexed using keywords. When you enter a query at a
search engine website, your input is checked against the search engine’s keyword
indices. The best matches are then returned to you as hits. For checking, it uses any of
the Search algorithms.

Search Engines use software programs known as robots, spiders or crawlers. A robot
is a piece of software that automatically follows hyperlinks from one document to the
next around the Web. When a robot discovers a new site, it sends information back to
its main site to be indexed. Because Web documents are one of the least static forms
of publishing (i.e., they change a lot), robots also update previously catalogued sites.
How quickly and comprehensively they carry out these tasks vary from one search
engine to the next.

 47

Graph Algorithms and
Searching Techniques

3. String Pattern matching

Document processing is rapidly becoming one of the dominant functions of
computers. Computers are used to edit, search and transport documents over the
Internet, and to display documents on printers and computer screens. Web ‘surfing’
and Web searching are becoming significant and important computer applications, and
many of the key computations in all of this document processing involves character
strings and string pattern matching. For example, the Internet document formats
HTML and XML are primarily text formats, with added tags for multimedia content.
Making sense of the many terabytes of information on the Internet requires a
considerable amount of text processing. This is accomplished using trie data structure,
which is a tree-based structure that allows for faster searching in a collection of
strings.

9.5 SUMMARY

Searching is the process of looking for something. Searching a list consisting of
100000 elements is not the same as searching a list consisting of 10 elements. We
discussed two searching techniques in this unit namely Linear Search and Binary
Search. Linear Search will directly search for the key value in the given list. Binary
search will directly search for the key value in the given sorted list. So, the major
difference is the way the given list is presented. Binary search is efficient in most of
the cases. Though, it had the overhead that the list should be sorted before search can
start, it is very well compensated through the time (which is very less when compared
to linear search) it takes to search. There are a large number of applications of
Searching out of whom a few were discussed in this unit.

9.6 SOLUTIONS / ANSWERS

Check Your Progress 1

1) No
2) It will be located at the beginning of the list

Check Your Progress 2

1) (a) F

(b) F
(c) F

9.7 FURTHER READINGS

Reference Books
1. Fundamentals of Data Structures in C++ by E. Horowitz, Sahai and D. Mehta,

Galgotia Publications.

2. Data Structures using C and C ++ by Yedidyah Hangsam, Moshe J.
Augenstein and Aaron M. Tanenbaum, PHI Publications.

3. Fundamentals of Data Structures in C by R.B. Patel, PHI Publications.

Reference Websites

http:// www.cs.umbc.edu
http://www.fredosaurus.com

 48

http://www.csi.edu/
http://www.fredosaurus.com/

 49

Searching

	1st & Credit Page of MCS-21 Block-3_fero.pdf
	DATA AND
	GRAPH ALGORITHMS AND SEARCHING TECHNIQUES

	UNIT 7
	Advanced Trees 5
	UNIT 8
	Graphs 20
	UNIT 9
	Searching 40

	 Programme / Course Design Committee
	Block Preparation Team
	Block Production Team
	ISBN (

	Unit+-+7.pdf
	(Check Your Progress 1
	(Check Your Progress 2
	(Check Your Progress 3
	Check Your Progress 3
	7.7FURTHER READINGS
	
	
	
	
	Reference Websites

	Unit+-+8.pdf
	Figure 8.1: A graph
	Cycle : A graph contains cycles if there is a path of non-zero length through the graph, p = <v0,v1,...,vk> such that v0 = vk.
	Spanning Trees: A spanning tree of a graph, G, is a set of |V|-1 edges that connect all vertices of the graph.
	Figure 8.3: A Directed Graph
	Figure 8.4: A Graph

	Figure 8.8: A Graph
	Figure 8.14 : DFS tree of digraph of Figure 8.13
	Figure 8.16: Transpose and strongly connected components of digraph of Figure 8.15
	
	Check Your Progress 1
	Check Your Progress 2
	Check Your Progress 3
	Reference Websites

	Unit+-+9.pdf
	Structure Page Nos.
	Program 9.1: Linear Search
	Telephone Directory
	Efficiency of Linear Search
	
	
	
	
	(Check Your Progress 1
	Algorithm

	Program 9.2 gives the program for Binary Search.
	
	
	
	Program 9.2 : Binary Search

	Efficiency of Binary Search
	
	
	
	
	
	Comparative Study of Linear and Binary Search

	Check Your Progress 1
	Reference Books
	
	
	Reference Websites

